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Title

Simulation Methods in Ruin Models
with Non-linear Dividend Barriers 1

Abstract

In this paper we consider a collective risk reserve process of an insurance portfolio char-
acterized by a homogeneous Poisson claim number process, a constant premium flow and
independent and identically distributed claims. In the presence of a non-linear dividend bar-
rier strategy and interest on the free reserve we derive equations for the probability of ruin
and the expected present value of dividend payments which give rise to several numerical
number-theoretic solution techniques. For various claim size distributions and a parabolic
barrier numerical tests and comparisons of these techniques are performed.
In particular, the efficiency gain obtained by implementing low-discrepancy sequences instead
of pseudorandom sequences is investigated.

1Research supported by the Austrian Science Foundation Project S-8308 MAT
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Title

Quantum Monte Carlo:
Direct Calculation of Corrections to Trial Wave Functions and Their Energies

Abstract

We will discuss an improved Monte Carlo method for calculating the difference δ between
a true wavefunction Ψ and an analytic trial wavefunction Ψ0. The method also produces
a correction to the expectation value of the energy for the trial function. Applications to
several sample problems as well as to the water molecule will be described.

We have described previously a quantum Monte Carlo (QMC) method for the direct cal-
culation of corrections to trial wavefunctions [1-3]. Our improved method is much simpler
to use. Like its predecessors the improved method gives (for fixed nodes) the difference δ
between a true wavefunction Ψ and a trial wavefunction Ψ0, but it gives in addition the
difference between the true energy E and the expectation value of the energy Evar for the
trial wavefunction.

The statistical or sampling errors associated with the Monte Carlo procedures as well as
any systematic errors occur only in the corrections. Thus, very accurate wavefunctions and
energies may be corrected with very simple calculations.

For systems with nodes the nodes are unchanged. The wavefunctions and energies for these
systems are corrected to the fixed-node values - those corresponding to the exact solutions
for the fixed nodes of the trial wavefunctions.

The method has the very desirable features of: good wavefunction in / better wavefunction
out ... good energy in / better energy out.

The ground state of the helium atom provides a simple example. We used as a trial wavefunc-
tion the 189-term Hylleraas function described by Schwartz [4] which is accurate to about 10
digits. The true energy is known to at least 13 digits from the analytic variational calculation
of Freund, Huxtable, and Morgan [5] with a more complex trial function.

The expectation value for the trial function is −2.903 724 376 180(0) hartrees. The calculated
correction is−0.000 000 000 856(2) hartrees which gives a corrected value of−2.903 724 377 036(2)
hartrees. This may be compared with the known value of −2.903 724 377 034(0) hartrees.

The water molecule presents the problem of nodes in the wavefunction as well as a much
higher dimensionality. In this case the nodes are fixed in position by the use of fixed-node
QMC procedures [6] and the resulting energy obtained is the fixed-node energy for the nodes
of the trial wavefunction. As in any fixed-node calculation the energy obtained is a variational
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upper bound to the true energy, and if the nodes are wrong the energy will be higher than
the true energy.

The trial function for this case was a simple SCF function, consisting of a single 10x10
determinant of LCAO-MO terms of Slater-type orbitals without any Jastrow or other explicit
electron correlation terms. The expectation value of the energy for the trial function and the
fixed-node QMC energy were determined independently by standard methods.

In this case the initial energy is −75.560 hartrees, the calculated correction is −0.599 hartrees,
and the corrected value is −76.169(10) hartrees. This may be compared with the indepen-
dently calculated value of −76.170(10) hartrees.

Earlier fixed-node QMC calculations for systems of ten or more electrons have used single-
determinant trial wavefunctions with Jastrow terms. With the improved correction procedure
the need for accurate expectation values for the trial function requires eliminating the Jastrow
terms, but it may make practical the use of many more determinants in the trial function.
This is likely to give improved node locations and lead to much lower node location errors.
The sign problem of quantum Monte Carlo for large systems would not be eliminated but it
might be significantly reduced.

[1] J. B. Anderson and B. H. Freihaut, J. Comput. Phys. 31, 425 (1979).

[2] J. B. Anderson, J. Chem. Phys. 73, 3897 (1980).

[3] J. B. Anderson, M. Mella, and A. Luechow, in Recent Advances in Quantum Monte Carlo
Methods, (W. A. Lester, Jr., Ed., World Scientific, Singapore) 1997, pp. 21-38.

[4] C. Schwartz, Phys. Rev. 128, 1146 (1962).

[5] D. E. Freund, B. D. Huxtable, and J. D. Morgan III, Phys. Rev. A 29, 980 (1984).

[6] J. B. Anderson, J. Chem. Phys. 63, 1499 (1975).
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Title

The Simulation of Detonations

Abstract

The Direct Simulation Monte Carlo (DSMC) method (1,2) has been found remarkably suc-
cessful for predicting and understanding a number of difficult problems in rarefied gas dynam-
ics. Extension to chemical reaction systems has provided a very powerful tool for reacting
gas mixtures with non-Maxwellian velocity distributions, with non-Boltzmann state distribu-
tions, with coupled gas-dynamic and reaction effects, with concentration gradients, and with
many other effects difficult or impossible to treat in any other way. Examples of systems
which may be treated include flames and explosions, shock waves and detonations, reactions
and energy transfer in laser cavities, upper atmosphere reactions, and many, many others. In
this paper we will discuss the application of the DSMC method to the problem of detonations,
a classic and extreme example of the coupling of gas dynamics and chemical kinetics.

Although a Monte Carlo simulation of a gas was described by Lord Kelvin in 1901 (3), it was
not until the 1960’s that the use of such simulations became practical for solving problems
in the field of rarefied gas dynamics. The combination of an efficient sampling method by
Bird (1) in 1963 with high speed computers made possible the nearly exact simulation of a
number of systems that had earlier been impossible to analyze. The current generation of
computers makes it possible to consider much more ambitious applications: those in which
chemical reactions are important.

A detonation wave travels at supersonic speed in a reactive gas mixture and is driven by the
energy released in exothermic reaction within the wave. The modern theory of detonations
begins with the work of Chapman and of Jouguet about 1900, and their work has been
extended by a number of others, in particular by Zeldovich (4), von Neumann (5), and
Döring (6). These three arrived independently at an expression, the ZVD expression, giving
the velocity of a detonation wave as the velocity of sound in the completely burned gases
when the shock wave precedes the reaction.

In order to simplify our DSMC calculations and to clarify the results by eliminating extrane-
ous effects, we considered the special case of the reaction of A + M → B + M in which the
masses of A, B, and M are equal. The gases were specified as ideal and calorically perfect with
constant heat capacities. The cross-sections for reaction were specified as simple functions
of collision energy corresponding to Arrhenius behavior. Calculations were carried out for a
variety of conditions - covering a wide range of exothermicities and reaction rate parameters.
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The simulations provide complete details of the properties of the system as they vary across
the detonation wave. A variety of interesting results have been obtained. Temperature,
density, and reaction-rate peaks may be separated. Temperature and density maxima depend
strongly on reaction rate. The thickness of the reaction zone depends strongly on conditions.
The results provide severe tests for some of the earlier theoretical models of detonations.

(1) G. A. Bird, Phys. Fluids 6, 1518 (1963).

(2) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas flows, Clarendon
Press, Oxford, 1994.

(3) Lord Kelvin, Phil. Mag. (London) 2, 1 (1901).

(4) Y. B. Zeldovich, J. Exptl. Theoret. Phys. (U.S.S.R.) 10, 542 (1940).

(5) J. von Neumann, O.S.R.D. Rept. No. 549 (1942).

(6) W. Döring, Ann. Physik 43, 421 (1943).
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Monte Carlo Treatment of UV Light Imprisonment in Fluorescent Lamps

Abstract

The efficiency of a modern fluorescent lamp is reduced significantly by self-absorption of
the 2537-Å ultraviolet radiation emitted from mercury within the lamp (1). Experimental
measurements indicate the efficiency may be increased by tailoring the isotopic composition
of the mercury as by the addition of 196

80Hg to natural mercury (2).

Radiation emitted by an atom in an optical transition from an excited state to the ground
state is commonly called ”resonance radiation.” Since the cross-section for absorption of this
radiation by atoms in the ground state is typically large, a quantum of radiation released
within a chamber containing emitting atoms is likely to be reabsorbed before reaching the
walls of the chamber. The absorbing atom may subsequently emit the radiation, and the
emission-absorption steps may be repeated a large number of times. The radiation is described
as ”imprisoned” or ”trapped” when the number of steps required for escape to the walls is
large.

The imprisonment of resonance radiation in the electrical discharge of fluorescent lamps can
be treated by Monte Carlo methods. The calculation of radiation and energy transfer is
essentially a simulation of the processes occurring within the lamp. Following the initial
excitation of a mercury atom its energy (or photon) is tracked from atom to atom until the
photon either leaves the system or is lost by quenching in the collision of an excited atom with
another atom. The procedure is repeated thousands of times to obtain a reliable estimate
of the overall exit probability and a spectrum of the exit radiation with an acceptable noise
level.

Many of the variables required in the calculation are selected from appropriately weighted
distributions. For example, an initial isotopic species to be excited is selected with a prob-
ability proportional to its fraction in the mixture. The direction of an emitted photon is
selected at random in three dimensions. The frequency of the emitted radiation is selected
from a Voigt distribution with the line center corresponding to that of the excited atom. The
free path of a photon is selected from the calculated distribution of free paths for a photon
with the same wavelength.

The effects of emission and absorption linewidths, hyperfine splitting, isotopic composition,
collisional transfers of excitation, and quenching are explicitly included in the calculations.
The calculated spectra of the emitted radiation are in good agreement with measured spectra
for several combinations of lamp temperature and mercury composition. The complete details

117



of the hyperfine structure of the spectra including multiple peaks for the isotopes and line-
reversal are accurately reproduced. Also in agreement with experiments, the addition of
196
80Hg to natural mercury is found to increase lamp efficiency.

(1) J. F. Waymouth, ”Physics for Fun and Profit”, Physics Today 54, 38 (2001).

(2) J. Maya, M. W. Grossman, R. Laguschenko, and J. F. Waymouth, Science 226, 435
(1984).
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Title

Proof of a Simple Time–Step Propagation Scheme
for Monte Carlo Simulation2

Abstract

Monte Carlo simulation has been established as a stochastic method for the solution of the
Boltzmann transport equation (BE) (1; 2; 3) which is an integro–differential equation for the
electron distribution function. Its solution can be used to compute macroscopic quantities
such as the electron density or the current density. Since the BE considers the electron
drift in the electric field as well as the scattering events at a microscopic level, it allows
one to take physical effects occurring in deep submicron metal–oxide–semiconductor field–
effect transistors (MOSFETs) into account, for example ballistic and hot–electron transport.
Various algorithms have been developed to improve the computational efficiency of the Monte
Carlo simulation. Among them is the self–scattering scheme of Rees (4) which uses an upper
estimate Γ of the scattering rate to greatly facilitate the determination of the collisionless
flight–time. In order to avoid at the same time a large number of self–scattering events
involved with a global upper estimation, a variable Γ scheme is often being employed (1; 5;
6; 7). This scheme is especially useful for full–band Monte Carlo (FBMC) simulation where
the electronic band structure is not described by an analytical formula, but computed by
the empirical pseudopotential method and stored in a table. Here it is natural to assign
a different Γ to each element of the discretized phase–space. However, for large selected
free–flight times the electron will leave the original phase–space element and the flight–time
is usually adjusted in a rather complicated manner in order to accomodate the change of
Γ (5; 6; 7). It is the aim of this paper to show that such an adjustment is not necessary,
but that simply a new flight–time can be stochastically selected if the border of the original
phase–space element is crossed.

The proof is based on the calculation of the probability that there is no scattering between
the times 0 and t. This event is equivalent to the time of the first scattering, ts, being larger
than t and therefore the event will be denoted by {ts 6∈ (0, t)}. When the time interval (0, t)
is decomposed into two not necessarily equidistant time intervals, the above event can be
represented as the intersection of the events that there is no scattering in any of the two
intervals, i.e. we have for the corresponding probability

1Speaker
2Research supported by the Kommission für Technologie und Innovation (KTI), project 4082.2
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P ({ts 6∈ (0, t)}) = P ({ts 6∈ (0, t1)} ∩ {ts 6∈ (t1, t)}) (1)

Equation (1) is completely general and does not refer to the Boltzmann transport equation
(BE). On the other hand, in the specific case of the BE, this probability is given by (8; 9)

PBE({ts 6∈ (0, t)}) = exp
(
−

∫ t

0
S(k(τ)) dτ

)
(2)

where S is the scattering rate and k(τ) the electron’s momentum at time τ . The exponential
in Eq. (2) allows a factorization according to

PBE({ts 6∈ (0, t)}) = PBE({ts 6∈ (0, t1)} ∩ {ts 6∈ (t1, t)})

= exp
(
−

{∫ t1

0
S(k(τ)) dτ +

∫ t

t1

S(k(τ)) dτ

})

= exp(−
∫ t1

0
S(k(τ)) dτ)× exp(−

∫ t

t1

S(k(τ)) dτ)

= PBE({ts 6∈ (0, t1)})× PBE({ts 6∈ (t1, t)}). (3)

Since P (A∩B) = P (A)×P (B) for stochastically independent events A and B, Eq. (3) proves
that the absence of scattering in the interval (t1, t) is independent of the absence of scattering
in the interval (0, t1). In other words, when the event that the first scattering does not occur
before t1 is realized (with the help of a random number r evenly distributed in [0, 1)), the
particle can be propagated until t1 and then a new random number can be generated to
decide whether scattering occurs in the next interval.

For an explicit treatment of the opposite event, we observe regardless of the above consider-
ations that Eq. (2) shows for t →∞ that there will occur, at some time, the first scattering.
It follows that

PBE({ts ∈ (0, t1)}) = 1− PBE({ts 6∈ (0, t1)}) = 1− exp(−
∫ t1

0
S(k(τ)) dτ). (4)

Hence, in the self–scattering scheme with an upper estimation Γ of S(k), the event of the first
scattering occurring before t1 is realized for r < 1 − exp(−Γt1). In this case the particle is
propagated as usual until ts = − 1

Γ ln(1−r). In fact, the above inequality leads to −ln(1−r) <
Γ t1 and therefore to ts < t1.

In summary, the above considerations have proven the following propagation scheme. First,
a random number is used to determine whether the first scattering occurs before a given time
t1. In this case, the particle is propagated according to the corresponding free–flight time,
otherwise until t1. Then a new, possibly different time step is defined and the procedure is
repeated. The validity of this scheme has been verified by an explicit comparison with the
standard Monte Carlo scheme and was used for an efficient FBMC device simulation (10).
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Monte Carlo Simulation of the Transient Response of
Single Photon Absorption in X-ray Pixel Detectors

Abstract

A Monte Carlo method to simulate the transient response of X-ray pixel detectors is proposed.
The method combines the use of a state of the art photon transport and absorption model with
full band Monte Carlo simulation of the semiconductor detector. The method has been used
to study the transient response of a single photon absorption event in three different X-ray
pixel detectors, one photon counting detector, one integrating detector and one scintillator
coated integrating pixel detector. In a photon counting detector each absorbed photon is
detected as a current pulse, which in turn triggers a digital counter. In an integrating version,
the current is integrated by a charge sensitive amplifier, producing an analog signal as the
detector output. Coating an integrating detector with a scintillating layer increases the
number of photons that can be detected by the detector. In this case the signal is generated
both by X-ray photons captured in the scintillator and by X-ray photons captured directly
in the semiconductor. There are different reasons to study the single photon absorption
in these detector structures. In the photon counting configuration the actual output signal
is the transient response of a single photon absorption event. On the other hand, in the
integrating configuration the single photon event may be used to study charge sharing effects
introduced by absorption in the boundary region of the pixel detector. In this case the interest
is primarily to track the generated carriers as they are distributed among the neighboring
pixels.

Introduction to X-ray imaging detectors

An X-ray detector can either be made from a heavy semiconductor with high stopping power
for X-rays or a scintillator can be used to convert the X-ray photons to visible light, which is
then sensed by a pixel sensor. In a single layer detector, made from a heavy semiconductor,
the response of the system is only determined by the properties of the semiconductor. In a
detector system where a scintillator and photo-detector form a two-layer system the response
of the system depends both on the properties of the scintillator and the properties of the
photo-detector.

1Speaker; e-mail: Ervin.Dubaric@ite.mh.se
2also: Solid State Electronics, Department of Microelectronics and Information Technology, Royal Institute

of Technology (KTH), Electrum 229, SE-164 40 Kista, Sweden
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In a scintillator coated X-ray imaging sensor the signal is generated both by X-ray photons
captured in the scintillator and by X-ray photons captured in the semiconductor sensor. Since
the amount of generated charge in the semiconductor, per MeV of absorbed X-ray energy,
differs significantly depending on where the absorption occurred, the image properties are
affected both by the scintillator and the semiconductor sensor.

In a photon counting system a pure semiconductor detector is used. The detector should
have high charge collection efficiency, which demands the use of a very pure semiconductor
material in order to obtained the highest possible µ · τ product. A typical sensor consists of
a shallow PN junction, with as large depletion region in the bulk as possible.

Simulation

A method to simulate these types of detectors is proposed. The method is based on the use of
two different Monte Carlo simulation software packages. The photon transport is simulated
using the commercially available MCNP software and the charge carrier transport is simulated
using our own full band Monte Carlo device simulator. A third, in house software, is used
as a link between the two Monte Carlo simulators when simulating the scintillator coated
detector. This in house software calculates the distribution and absorption of visible light in
the semiconductor resulting from an X-ray absorption in the scintillating layer. A large part
of this light is absorbed near the surface of the nearest pixel detector. However, depending on
the design of the scintillating layer charge sharing may occur as the light is scattered towards
neighboring pixels.

The simulation procedure starts by simulating the detector structure in MCNP. MCNP cal-
culates the trajectory of incoming X-ray photons using a Monte Carlo approach. The tra-
jectories of the simulated photons are investigated and a number of particularly interesting
trajectories is selected. Each of these trajectories (including data for deposited charge along
the path) is used as input in the full band Monte Carlo device simulator. In the case of an
absorption in the scintillator layer, the in house light scattering program is used to transfer
the signal down to the semiconductor detector. The response of the detector is then simulated
using the full band Monte Carlo device simulator.

There are several important issues that need to be addressed in simulation of the detector re-
sponse. The detector structures are usually very large which makes self-consistent simulation
very time consuming. In this work we have used self-consistent simulations in the photon
counting detector where the absorption event occurs in the depletion region. In this way we
may directly record the current pulse at the detector electrodes. In the case of the integrating
detectors we are following the carriers as they move towards collection. The charge sharing is
studied by comparing the number of carriers absorbed at different pixel locations. The actual
current pulse is not recorded, which allows us to use a constant potential profile during the
simulation. The potential profile has been obtained from drift-diffusion simulation of a dark
detector.

Simulation result of different detector structures is presented using this new approach. The
result has primarily been used to visualize the charge sharing in pixel arrays and to study the
transient response as a function of position of the absorption in photon counting detectors.
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A Particle Monte Carlo Simulation
Based on the Wigner Function Distribution

Abstract

We present results of a new particle-based ensemble Monte Carlo (EMC) simulation of the
Wigner distribution function (WDF). EMC of quantum systems is difficult to implement due
to the particle nature of the method and the wave-like nature of the quantum phenomena.
We introduced a new property for the particles, which we call the particle affinity, which
allows the overall distribution to assume negative and partial electron values. We divide
the simulation into two system, the first being the EMC regime, and the second being the
WDF regime. Although two systems exists, the two systems work simultaneously within the
simulation. Within the EMC regime, all particles in the system are treated equally, that is, all
particles have an assigned position and momentum, all particles drift and are accelerated and
scattered. In the WDF regime however, along with the pre-mentioned properties assigned
to the electrons, we also assign the electrons an affinity. The affinity value the electron may
take must have a magnitude less then one, where a value of one corresponds to a “present”
electron, a value of minus one corresponds to a “minus presence,” and any value in between
accounts for the partial “presence” or “minus presence” of an electron. Within the simulation,
all particles drift and are accelerated, independent of what their affinities might be. However,
when calculating the Wigner potential (which is a non-local potential), we switch to the WDF
regime. Here, the Wigner distribution is defined by

f (x, k) =
∑

i

δ(x− xi)δ(k − ki)A (i), (1)

where the delta functions represent the presence of a particle from the EMC regime, and
A, the affinity, represents the value of the electron which is contributed to the distribution.
Results using this method are shown in Fig 1. The results show a gaussian wave packet
which has tunneled through a potential barrier. This result has been compared to two fully
quantum mechanical simulations, namely, a full solution of Schrödinger equations and the
direct solution of the WDF. The transmission coefficients of all three cases is ∼ 0.35, which
corresponds to the analytical value determined from simple tunneling theory. The new EMC

1Speaker; Research supported by the Office of Naval Research
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method has also been checked against the other methods using Bohm trajectories which
show remarkable similarity to each other. The EMC method correctly shows that the Bohm
trajectories originating from the front of the gaussian packet are the ones that tunnel. Not
only does the particle solution calculate the correct transmission and give the correct Bohm
trajectories, but also, the resulting density displays interference effects and correlations, seen
in Fig 1, that have previously only been seen in fully quantum mechanical simulations. Cor-
relations are fully quantum mechanical and allow for time reversal in quantum systems. We
believe this to be the first particle-based simulation that correctly accounts for interference,
correlation and tunneling.

Figure 1: Distribution function from EMC solution of a gaussian which has tunneled through
a potential barrier 2nm wide and 0.3 eV high.
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Monte Carlo Modeling of Quantum Effects in
Semiconductor Devices with Effective Potentials

Abstract

As modern devices continue to scale to smaller sizes, it has become imperative to include
quantum mechanical effects when modeling device behavior. We have recently proposed the
use of the effective potential to treat the quantum mechanical effects of confinement in the
region adjacent to the oxide interface [1]. In this work, we illustrate the use of the effective
potential as a fast and simple method of including these effects in Monte Carlo simulation of
ultrasmall SOI MOSFETs.

The effective potential concept uses the fact that as the electron moves, the edge of the wave
packet encounters variations in the potential profile before the center of the wave packet.
Mathematically, this effect at a point (xi, yj) can be treated as the convolution of the potential
with the Gaussian wave packet as follows:

Veff (xi, yj) =
∫∫

V (x, y)G(x, y; xi, yi; ax, ay)dxdy

where G is the Gaussian function with standard deviations ax and ay. The spread of the
wave packet is determined by the thermal de Broglie wavelength for the lateral direction and
the confining potential in the transverse direction [2,3].

The effective potential is included in the Monte Carlo transport simulation by applying
the above convolution to the potential found from solution of the Poisson equation. As an
example, the resulting effective potential profile for an SOI NMOSFET with a 30 nm silicon
layer is illustrated in Fig. 1 for an applied gate and drain voltage of 1.2 volts. The potential
clearly increases at the oxide interfaces as a result of the convolution with the electron wave
packet. As a result of this potential increase, the electrons experience a strong electric field,
which is then included in the Monte Carlo transport kernel.

As a demonstration of this, Fig. 2 shows the electron density distribution that corresponds to
the potential profile in Fig. 1. The average electron density set-back from the gate interface
is about 2.5 nm, which is consistent with results shown elsewhere [3].

1Speaker; Research supported by the Semiconductor Research Corporation
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Figure 1: Potential profile for a 30 nm SOI NMOSFET.

Figure 2: Source and channel electron density distribution for the potential shown in Figure
1. Note: to bring out the details of the channel distribution, the drain region is not shown.

In this work we show how the charge set-back and ground state energy rise results in the
expected increase in threshold voltage and reduces the drive current. The threshold voltage
for the shown device increases approximately 0.2 volts when the quantum effects are included
with the effective potential.

References
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Figure of Merit for Digital Nets over Z2

Abstract

In this talk we will generalize some techniques from real diophantine approximation which
might be helpful for locating good candidates for binary digital nets in higher dimensions.
Articles (6; 8) are rich sources for the current status of digital nets over a general field and
a wealth of computational information.

As Harald Niederreiter explained in Section 4.4 of (4), the theory of continued fractions can be
used to identify good two-dimensional digital nets over finite fields. In Theorem A of (1), G.
Larcher, A. Lauss, H. Neiderreiter, and W. Ch. Schmid further analyze this construction of
nets, a construction which is reminiscent of Hlawka’s good lattice points. For fixed f ∈ Z2[x]
with deg(f) = n ≥ 2, we set R = Z2[x]/(f) and choose the coset representative of minimal
degree. For any fixed dimension s ≥ 2, the digital (t, n, s)-nets formed using f ∈ Z2[x],
g ∈ Rs have small t = n− ρ(g, f), where

ρ(g, f) = s− 1 + min{
s∑

i=1

d(hi) : h ∈ V (g)},

V (g) = {h ∈ Rs : h1g1 + . . . + hsgs = 0}, and d is defined on R by d(0) = −1 and
d(g) = deg(g) for nonzero g.

For fixed s ≥ 2, we would like to determine f ∈ Z2[x] for which there exists g ∈ Rs such that
ρ(g, f) is large and also to identify such g ∈ Rs. We restrict attention to g whose coordinates
are relatively prime to f ; that is, gi ∈ U(R), the group of units. We then may standardize
to g = (1, g1, g1g2, . . . , g1 · gs−1). For fixed f we set µ(g) = ρ(g, f)− (s− 1).

As for the reals, for any g ∈ U(R) a continued fraction can be obtained for g
f by applying

the Euclidean Algorithm to g and f as elements of Z2[x]. This yields the partial quotients
a1, . . . , aN ∈ Z2[x] of the continued fraction for g

f . Its sequence of convergents, pi

qi
, is obtained

from using the recurrence

p0 = 0, p1 = 1, pi = aipi−1 + pi−2 ; q0 = 1, q1 = a1, qi = aiqi−1 + qi−2 ,

where qN = f and all other pi, qi are polynomials whose degree is less than n.

For s = 2: From Theorem 4.46 in (4) we obtain µ((1, g), f) = n − A(g) where A(g) =
max{d(ai) : i = 1, . . . , N} . With this result, the question of maximizing the two-dimensional
figure of merit reduces to identifying f for which there exist g ∈ U(R) such that A(g) = 1
(which we call poorly approximable g). When f has t distinct nonlinear irreducible factors
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in Z2[x], Jill Mesirov and Melvin Sweet prove in (3) that there exist either no or 2t poorly
approximable g, and that irreducible f always have two. Jill Lombaer, a Master of Arts
student, has tabulated some poorly approximable g when deg(f) is small.

In order to obtain f which have a good figure of merit in higher dimensions, some “simulta-
neous approximation” of g1, g2, . . . , gs−1 in R must be excluded. For this, it seems necessary
to refine our knowledge of the quality of approximation inherent in the continued fraction
process. We explain this more in what follows.

Some basic observations are:

1. If a1, . . . , aN are the partial quotients for g ∈ U(R) then aN , . . . , a1 (in order) are the
partial quotients for g−1. From this we obtain a1, . . . , aN is symmetric if and only if
g2 = 1, which cannot hold when f is irreducible in Z2[x].

2. Suppose g2 6= 1. If pi

qi
and Pi

Qi
are the sequences of convergents for g

f and g−1

f , respec-
tively, then for all i = 0, 1, . . . , N − 1

qig = QN−i−1 ; Qig
−1 = qN−i−1.

3. (Analogue of Ostrowski’s expansion (5; 7)) Let V denote the set of polynomials of
degree less than n, considered as a vector space over Z2. For di = d(ai) − 1, the
sequence f0, . . . , fn defined by

q0, q1, xq1, . . . , x
d1q1, q2, . . . , x

dN−1qN−1

is a basis for V . Moreover, if the expansion of c ∈ R is

c = fi1 +
∑

i1<i<is

βifi + fis for i1 ≤ is; βi ∈ Z2

then

(a) for i1 = d(qk),

d(cg) = d(QN−1−k) = d(aN ) + . . . + d(aN−k);

(b) for i1 with d(qk−1) < i1 < d(qk),

d(cg) = d(xmQN−1−k) = m + d(QN−1−k),

where m = max{i : βi 6= 0 and d(qk−1) < i < d(qk) }.

Our object is to apply this to the three-dimensional case. The results I have right now are
quite technical, but I’ll try to give a general flavor: We note that

µ(1, g1, g1g2) ≤ min{µ(1, g1)− 1, µ(1, g2)− 1, µ(1, g1g2)− 1}.

129



For this talk we restrict to f for which there exist g1 6= g−1
2 with A(g1) = A(g2) = 1

and A(g1g2) ≤ 2. (For irreducible f this forces g2 = g1 and A(g2
1) = 2.) Using the basis

{(g1, 1, 0), (0, 1, g−1
2 )} for V (g), we investigate

min{d(c1g1) + d(c1 + c2) + d(c2g
−1
2 ) : ci ∈ R, not both zero }.

Considering c1, c2 ∈ R with

d(c1g1) + d(c1 + c2) + d(c2g
−1
2 ) ≤ n− 3,

it follows that d(c1) = d(c2) > n+1
2 . Labelling the convergents corresponding to g1 and g−1

2

by {pi

qi
} and { ri

si
}, respectively, possible candidates are c1 = qd, c2 = sd for d > n+1

2 . Using
the continued fraction process, we’ve shown that d(qd + sd) cannot be “very small”; our
results are not very tight. More computation will give a better idea of the fruitfulness of this
approach for identifying f with good three-dimensional digital nets over Z2.
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A Full Band Monte Carlo Simulator for Cubic and Hexagonal Semiconductor
Materials and Devices: an Object-Oriented Approach

Abstract

A full band MC simulator consists of a number of interdependent physical models, which can
be implemented using different levels of approximations. The approximation needed for each
model is dependent on the application for the simulator. In an advanced device simulator, the
complexity of the models needed may vary over different regions in the device. For example, in
a region with few carriers a very CPU-time demanding model may be required, which may be
impossible to apply in a region with higher carrier density. Processes like impact ionization,
as well as injection and absorption of carriers at contacts, are best handled using dynamic
memory structures. In addition, statistical enhancements in rare regions are often needed in
simulations of devices with high variation of carrier concentration. These enhancements are
usually achieved by letting the weight and the number of superparticles (cluster of carriers)
vary in time and space during the simulation. All these different constraints make it difficult
to develop a general MC device simulator. This statement is underlined by the fact that
there is no such simulator available on the commercial market, although the MC method for
semiconductor simulations has been known for over 20 years. Our ambition in this work is
to present a thorough analysis of the requirements of a general MC device simulator. We
also present how these constraints have guided the development of an MC simulator at Mid-
Sweden University. Finally, we present some device simulation results for cubic and hexagonal
semiconductor materials.

Introduction

Traditionally, MC simulation programs are written in an imperative programming language,
most typical Fortran77, for a specific problem or a small class of problems. Adaptations to
other kinds of problems, and even minor adjustments, involve programming work and often
a considerable part of this work is due to shortcomings in the basic program design. These
limitations regarding the kind of problems handled by a simulator are caused by the following
facts:
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• The immense number of possible combinations of interacting submodels.

• The relatively poor modelling capability of imperative programming languages.

• The simulation packages are developed as part of research projects, where it is more
important to present fast results than develop a stable platform for future projects.
Until now there has been very little commercial interest in MC simulators that could
motivate the investment in a general MC software.

• The tradition in the physics and semiconductor physics community, where Fortran and
C are well known languages, but the knowledge of object-oriented languages is very
poor.

The goal for a project developing a general MC simulator must be a software package, where
all necessary models are available in the package. The users should only specify the charac-
teristics of the semiconductor material and of the simulated device, combining the adequate
submodels for the actual simulation. Furthermore, data for non-related submodels have to
be cleanly separated in different files, so that for instance material data tested in bulk simu-
lations can be used in device simulations without any change. The complexity of the problem
is such that the simulator must be written in object-oriented style, and a language giving full
support of object-orientation is highly recommendable. In order to handle the huge variation
of sizes of the necessary data structures, it is also necessary to make extensive use of dynamic
data structures.

An interesting aspect of this kind of projects is the development process. First of all, it is only
feasible if there is a fundamental understanding of the importance of generality. Secondly, the
software has to be continuously used in scientific ”production” simulations. These simulations
have to start with one specific material and some relatively simple devices. To achieve the
generality it is then necessary to make successive amendments to the program. Many of them
will result in the need to remodel older parts of the program, with accompanying testing and
debugging. This kind of process, known as incremental and iterative program development,
is tedious and the use of an object-oriented method helps greatly to increase the reliability
of the produced code.

Implementation

A general MC simulator has been developed based on the principles outlined above. The
program handles cubic and hexagonal crystal symmetries. New crystal symmetries can be
included by the addition of a small number of virtual functions and constant data areas. Be-
sides the usual MC simulation, the program contains modules for precalculation of energy or
k-vector dependent scattering rates, density of states, q-vector dependent dielectric function
and impact ionization transition rates from the full band structure.

The MC device simulator allows the description of arbitrary device geometries and doping
profiles. In addition, our implementation allows the device to be subdivided into different
regions, each with its proper material model. Furthermore, there is no arbitrary limitation in
the number of regions. The region concept can hence be used for a large number of different
purposes, which may range from simulation of different temperatures, over the usage of
simplified models in high-doped areas, to simulation of heterostructures.
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As an underlying structure for handling of statistic data and the discretization necessary for
the solution of Poisson’s equation, the simulator uses a mesh structure covering the entire
device. The charge to mesh assignment uses a data driven approach, which allows the use of
arbitrary charge assignment functions. Each mesh cell is also used to define a local weight
factor for the superparticles, diminishing the number of them in high-doped areas. The
scaling is made dynamically joining and splitting the superparticles according to the cell
weight factor. This approach results in considerably faster simulation time.

The efficiency and flexibility of the described approach is demonstrated in simulations of
MOSFET and MESFET devices in Si and 4H-SiC.
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Distributions of the Discrepancy of Scrambled
Digital (λ, t, m, s)-Nets

Abstract

Art Owen proposed scrambled (t, s)-sequences as a hybrid of Monte Carlo and quasi-Monte
Carlo methods. Quasi-Monte Carlo methods which use low discrepancy sequences often
yield a higher convergence rate than Monte Carlo methods. However, Monte Carlo methods
facilitate easier error estimate which is difficult for quasi-Monte Carlo methods. Randomizing
quasi-Monte Carlo methods obtain the benefits from the best of both by yielding higher
accuracy with practical error estimates.

Here we use a variation of Art Owen’s random scrambling which is not as general as his,
but still retains most of the desired properties. The following describes the construction of
randomly scrambled digital (λ, t,m, s)-nets.

Let b ≥ 2 denote a prime power, and let Zb = {0, 1, . . . , b − 1} be the finite (Galois) field
of order b. For any non-negative integer i = · · · i3i2i1(base b), define the ∞× 1 vector ψ(i)
as the vector of its digits. Let C1, . . . ,Cs denote predetermined ∞×∞ generator matrices.
Let L1, · · · ,Ls, be nonsingular lower triangular ∞ × ∞ matrices with non-zero diagonal
entries and let e1, · · · , es be an ∞×1 vector. Assume that for all r any linear combination of
columns of LrCr plus er does not end in an infinite trail of b−1. A particular Owen-scrambled
sequence, {xi}, is defined as

φ(xir) = LrCrψ(i) + er, r = 1, . . . , s, i = 0, 1, . . . . (1)

Here all arithmetic operations take place in the finite field Zb. To get a randomly scrambled
sequence one chooses the elements of the Lr and er randomly. A non-scrambled sequence is
obtained by choosing L1 = · · · = Ls = I and e1 = · · · = es = 0.

For an integer λ, 1 ≤ λ ≤ b− 1 the set of pints {x0, · · · , xλbm−1−1} is a digital (λ, t,m, s)-net.
The t-value for the digital sequence depends on the generator matrices Cr.

The discrepancy measures the uniformity of the distribution of a set of points and can be
interpreted as the maximum possible quadrature error over a unit ball of integrands. Here
we examine the distribution of the discrepancy for scrambled digital nets. The following is
the discrepancy that we used here.

D({xi})2 =

−1 +
1

N2

λbm−1∑

i,j=0

s∏

r=1

[
−(−γ2)α

(2α)!
B2α({xir − xjr}) +

α∑

k=0

γ2k

(k)2!
Bi(xir)Bi(xjr)

]
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where Bi(x) are Bernoulli polynomials, and the notation{x} means the fractional part of a
number of vector x. The positive integer α indicates the degree of smoothness of integrands
in the underlying Hilbert space, and the parameter γ measures the relative importance given
to the uniformity of the points in low dimensional projections of the unit cube versus high
dimensional projections of the unit cube.

Numerical experiments have been performed to compute empirical distribution of three differ-
ent scrambled (λ, t,m, s)-nets, namely Sobol’, Niederreiter-Xing, and a new sequence, where
the generator matrices are obtained by using an evolutionary algorithm. The discrepancy
of simple random points is computed also. Computations have been performed with dif-
ferent dimensions, numbers of points, and different γ values. Comparisons of the empirical
distributions and their implications are discussed.
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Nonequilibrium and Ballistic Transport, and Backscattering in Decanano
HEMTs: A Monte Carlo Simulation Study

Abstract

High electron mobility transistors (HEMTs) can be scaled into decanano dimensions in an
effort to attain better performance in RF applications. As the device dimensions are reduced,
the nonequilibrium and, particularly, ballistic transport starts to play an important role.
This paper investigates electron transport in a set of aggressively scaled HEMTs using Monte
Carlo (MC) device simulations. The study is based on an enhanced electron Monte Carlo
transport model embedded in our finite element simulator H2F. A thoughtful calibration of
the simulator has been performed against real 120 nm gate length pseudomorphic HEMTs.
The scaling of HEMTs is considered both in lateral and transversal directions in respect to
gate lengths of 90, 70, 50 and 30 nm. The scaled devices exhibit dramatic improvement
in performance although the external parasitics exert limitations (1). In addition, we also
investigate scaled HEMTs in which a second delta doping layer has been introduced into the
device structure (2). Placement of the second delta doping below the channel improves the
device linearity whereas placing the second delta doping above the original delta layer, near
to the gate, can improve transconductance (3).

The detailed study of the nonequilibrium transport in the scaled devices requires monitoring
of the velocity of each carrier through the device during the MC simulation thus enabling the
determination of the average carrier velocity. The average particle velocity in the channel
increases rapidly when the PHEMT is scaled from 120 to 70 nm in both single and double
doped structures. However, the velocity saturates with the further scaling of the devices to
gate lengths of 50 and to 30 nm. Electron transport in the channel beneath the gate has a
highly non-equilibrium character. The average particle velocity achieves its peak value here
and this is much larger than the bulk saturation velocity. A sharp drop in the velocity is
observed when electrons reach the extremely high field recess region on the drain side of the
device.

We have also compared the average particle velocities in the single and double doped struc-
tures. The peak of the average velocity through the channel is always larger in the double
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doped HEMTs than in the single doped HEMT. The peak velocity is larger by 10-20% in
the devices with the additional delta doping below the channel but only by 2-5% in the de-
vices with the second doping layer above the original doping. It appears that the effective
gate length in the double doped PHEMT with the second delta doping below the channel
is the same as the length in the single doped structure. However, the effective gate length
in the double doped PHEMT with the additional delta doping above the original doping is
greater. These observations suggest that the second delta doping layer placed below the chan-
nel, which increases the carrier sheet density in the device by about 70%, improves electron
transport in the channel. These devices exhibit a larger device linearity but no improvement
in transconductance. The double doped HEMT with the additional delta doping close to the
gate exhibits an increase in transconductance even the peak average velocity is practically the
same as in the single doped structure. This fact tell us that this increase in transconductance
comes solely from the better gate control of the charge in the channel (4).

The device gate length of the decanano PHEMTs becomes comparable to the inelastic mean-
free path of the carriers. Hence, electrons travelling through the gate region should have a high
probability of passing through this region ballistically (without suffering any collisions). To
study the ballistic transport in the scaled devices we monitor particles in the gate-controlled-
channel region and then calculate a field-momentum relaxation time as a reciprocal of Γfm,

Γfm =
e

~
|F|
|k| ,

where F is the electric field vector at the particle position and k is the particle wavevector.
This relaxation time represents the time during which the absolute particle momentum is
relaxed due to the effect of the electric field at the particle position. The field-momentum
relaxation rate, Γfm, is averaged over the number of particles passing through the gate-channel
region to give the mean field-momentum relaxation rate.

The mean field-momentum relaxation time can be compared among different devices in order
to assess the typical transport situation in the selected region of a device. When the field-
momentum relaxation time increases a large number of carriers can travel ballistically due
to the high electric fields and the small amount of scattering. On the other hand, a decrease
of this relaxation time clearly indicates that carriers undergo many scattering events in the
selected device region even if high electric fields are present. Using the field-momentum
relaxation time as one of the device characteristic parameter can, with the help of all other
information acquired by MC simulations of the transport in semiconductor devices, expose
the ballistic limit (6) which is expected as a result of the scaling process.

The mean field-momentum relaxation time increases with the gate scaling only up to the
90 nm gate length device in accordance with the behaviour of the average velocities in the
channel and then drops down to 50 nm and saturates at 30 nm device. This can be explained
as follows. The effect of the gate-fringing plays a significant role in particle kinetics (5).
The impact of this effect on particles increases when the gate length is scaled down. The
huge electric field in the recess region surrounds the gate and, consequently, the particles
are accelerated by these fringing fields when leaving the gate region on the drain side. The
acceleration by the gate-fringing effect, however, is limited in devices with gate lengths less
than 90 nm. This limitation is imposed by the increased scattering with phonons at high
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energies which mainly results in backscattering (6). As a result, the mean field-momentum
relaxation time starts to drop rapidly and then saturates when the gate length is scaled from
50 to 30 nm. The saturation of the field-momentum relaxation time occurs as the field particle
acceleration and energy losses as a result of the increased backscattering become balanced.
Backscattering adversely affects device performance and neutralises the benefits of ballistic
transport.
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Pricing American Style Options Using Low Discrepancy Sequences

Abstract

Monte Carlo simulation is an important computational tool for pricing complex derivatives
and valuing real options. It is widely used in modern risk management since it is well suited
for dealing with the large number of variables that are required to analyze the market risk
and credit risk of large portfolios. The two most important limitations of the Monte Carlo
method are that it is slow and the pricing of American options is difficult for high dimensional
problems. For a review and a discussion of related issues, see Boyle et al. (1997).

Until the publication of Tilley’s 1993 paper it was believed that American options could not
be valued by Monte Carlo simulation. Since then, this problem has attracted considerable
academic attention but despite significant progress has not been adequately solved for high
dimensional problems. The problem can be set up in a dynamic programming framework
where we can solve the optimization problem by working backwards through time. However
in the standard Monte Carlo method we generate future price paths of the asset or assets in
question starting from the current time. This forward marching approach clashes directly with
the backward recursion feature of dynamic programming. The decision to exercise depends
on the topography of the early exercise boundary, which is not furnished by standard Monte
Carlo methods used for European options.

In Boyle et al. (2000) we have introduced a new version of the Monte-Carlo method for pricing
high-dimensional American style derivatives. For these options, the estimation of the decision
rule to exercise early is equivalent to the estimation of a series of conditional expectations
with respect to different distributions. We propose to approximate these expectations by
sampling at each time step from only one distribution. We formulate optimality criteria for
this distribution and solve them. As it is not easy to use the optimal solution in practice, we
propose some approximations and show their asymptotical optimality. This approach allows
us to utilize quasi-Monte Carlo techniques, and we demonstrate that the resulting biased
high estimator achieves the high rate of convergence typical for low discrepancy sequences.

In this paper, we extend the previous work by proposing another estimator that is biased low.
It has the computational advantage that it can be obtained concurrently with the high-biased
estimator using recursive valuation approach.

The new estimator is a modification of the one considered by Avramidis et al. (2000) in the
context of a stochastic mesh only. Although low discrepancy sequences can also be applied
to the latter, the one that we propose exhibits a superior rate of convergence.
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Unlike the bias high estimator, we prove that the new estimator is only asymptotically bias
low. However, as we demonstrate, this does not cause serious practical problems if the
estimator is used jointly with low discrepancy sequences.

Some numerical examples are conducted to demonstrate efficiency of the method. We also
show that further enhancement to the proposed estimator is possible by incorporating some
of the standard variance reduction techniques.
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An Event Bias Technique for Monte Carlo Device Simulation

Abstract

Monte Carlo (MC) simulation of semiconductor devices requires measures to enhance the
statistics in phase space regions of interest that are sparsely populated. There are two
general classes of statistical enhancement techniques, namely population control techniques
and event bias techniques (1). To date virtually all MC device simulation codes utilize
population control techniques, whereas the event bias technique, introduced in the field of
semiconductor transport only one decade ago, (2)(3), has found no application.

This work deals with the MC method for stationary carrier transport, known as the Single-
Particle MC method. It gives a solution to the stationary boundary value problem defined by
the semi-classical Boltzmann equation. A theoretical analysis of this MC algorithm begins
with the transformation of the stationary Boltzmann equation into an integral equation (4).
Because the obtained equation describes the evolution back in time and we are aiming at a
forward MC algorithm, the conjugate equation needs to be formulated. The elements of the
Neumann series of the conjugate equation are finally evaluated by means of MC integration
(4). Using this mathematically-based approach the Single-Particle MC method is derived in
a formal way. For the first time, the independent, identically distributed random variables
of the simulated process are identified, allowing to supplement this MC method with the
natural stochastic error estimate. Furthermore, the extension of the MC estimators to the
case of biased events is derived.

The kernel of the conjugate equation yields the natural probability distributions which are
used for the construction of the particle trajectory. However, it is possible to choose other
than the natural probabilities for the MC integration of the terms of the Neumann series.
In that case one constructs numerical trajectories that differ from the physical ones. The
motivation for using arbitrary probabilities is the possibility to guide particles towards a
phase space regions of interest to enhance statistics. In this work we increase carrier diffusion
against a retarding electric field by introducing artificial carrier heating. The probability
for phonon absorption is increased at the expense of phonon emission, a measure which
increases the probability of a numerical particle to surmount an energy barrier. In regions
with small field, where transport is diffusion dominated, the distribution of the scattering
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angle is biased so as to induce artificial carrier diffusion. Furthermore, the distribution at
the boundaries has been modified, injecting test particles at much higher temperature than
the lattice temperature.

Changing probability distributions requires compensatory changes in the estimators. The
event bias technique can be summarized by a simple rule. Whenever in the course of numerical
trajectory construction a random variable, for example, a free flight time or an after scattering
state, is selected from a numerical density rather than from a physical density, the weight
of the test particle changes by the ratio of the physical over the numerical density. As a
consequence, the weight of a test particle evolves randomly. Individual particle weights can
evolve to extremely different values, predominantly to very small ones.

Optimal values of the parameters which control the bias are not known a priori. If the bias is
chosen too small, not enough particles will, for example, surmount an barrier, rendering sta-
tistical enhancement inefficient. On the other hand, by choosing the bias too large numerous
numerical trajectories will pass through the low concentration region. However, due to the
aggressive biasing the spreading of the particle weights will be very large, and the recorded
averages will again show a large variance. To find some optimum between these two extreme
cases a careful tuning of the bias parameters is necessary.

The described behavior of the event bias scheme suggests the usage of additional variance
reduction techniques (5). In the presented simulation study evolution of the particle weight
is governed predominantly by the event bias technique, and explicit measures are taken only
to prevent particle weights from getting extremely high or low (6).

The formal approach, which is based on Monte Carlo integration of the terms of the Neu-
mann series, clearly shows what the independent, identically distributed random variables
are. A realization of such random variable is a complete numerical trajectory that starts
and terminates at the domain boundary. Only complete numerical trajectories can be con-
sidered independent from each other, whereas particle states generated on one trajectory are
statistically dependent. Knowing these random variables standard textbook formulae can be
applied to estimate the variance of the MC estimates (7).
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Title

Monte Carlo and Quasi-Monte Carlo Modelling of Photonic Crystals 2

Abstract

In this paper we describe the application of Monte Carlo simulation to the modelling of
photonic crystals, a new class of materials with optical properties that offer promise in a
range of potential applications in the areas of information and communications technology.
First we describe the relevant physical and structural properties of these materials and outline
the derivation of the corresponding theoretical model. We then describe a Monte Carlo
investigation of the tolerance of these materials to fabrication defects.

Photonic crystals are a novel type of optical material in which the refractive index varies
periodically with position, which through interferometric action yields photonic band gaps—
that is, ranges of frequencies for which electromagnetic waves cannot propagate within the
structure. Defects in the material or structural properties of the crystal give rise to localised
states, or field modes, analogous to the impurity modes of semiconductors. These change
the radiation dynamics of the crystal and provide the ability to mould the flow of light in
various ways. It is this property that gives rise to many significant applications, including the
fabrication of microscopic lasers, new families of optical fibres, and the fabrication of optical
waveguides and switches which may be used as components in future integrated photonic
circuits.

Much of the research to date has been devoted to development of methods to compute
transmission spectra and the related band diagrams that characterise the frequencies and
directions for which light may propagate within a crystal. These, however, provide little
insight into their radiation dynamics, which are characterised by the local density of states
(LDOS). In three-dimensional crystal structures, for a given frequency the LDOS provides
the spectral distribution of modes to which a fluorescent source can couple. For large LDOS
values, emission at that frequency is enhanced; correspondingly, a small LDOS value indicates
that light emission is suppressed.

To date, the LDOS has been calculated in infinite periodic structures of one dimension, and
at isolated points within the unit cell of a three-dimensional lattice of spheres. Because of

1Speaker
2The authors would like to acknowledge the support of the Australian Research Council and the Australian

Centre for Advanced Computing and Communications (ac3).

144



the infinite extent of these structures, the LDOS vanishes identically within band gaps. For
realistic structures of finite extent, however, the LDOS within a band gap does not vanish
and it is thus a parameter of physical significance for photonic applications. Accordingly,
there is considerable interest in the development of efficient methods for computing densities
of states, and related measures, for finite crystals of realistic size.

In this paper we compute the two-dimensional LDOS for a two-dimensional crystal comprising
a finite cluster of Nc infinite circular cylinders aligned with the z axis, with cylinder l centred
at cl and having radius al and refractive index nl. The LDOS ρ(r; ω) is a function of spatial
position r and temporal angular frequency ω that is defined by

ρ(r; ω) = − 2ω

πc2
=Tr [Ge(r, r; ω)] ,

in terms of the electromagnetic Green’s tensor Ge(r, cs; ω), in the limit that the source
position cs approaches the field (observation) point r. The Green’s tensor represents the field
response due to a line source (in two dimensions) and, in the case of in-plane incidence, the
field problem decouples into its two fundamental polarisations in which either the electric or
magnetic fields align with the cylinder axis. These are respectively referred to as transverse
magnetic (TM) or transverse electric (TE) polarisations.

For simplicity and brevity, we outline only the treatment for TM polarisation that is parametrised
by the single non-trivial component of Ge, i.e., V e def= Ge

zz satisfying the boundary value prob-
lem

∇2V e(r; cs) + k2n2(r)V e(r; cs) = δ(r− cs), (1)

in which V e and its normal derivative ν · ∇V e at any interface are everywhere continuous.
Here, k is the free-space wavenumber and n(r) denotes the refractive index.

In the vicinity of each cylinder l, the exterior field in the free space background is expanded
in local coordinates rl = (rl, θl) = r− cl,

V e(r; cs) =
∞∑

m=−∞

[
Al

mJm(krl) + Bl
mH(1)

m (krl)
]
eimθl , (2)

and involves both irregular components, characterised by coefficients Bl
m, denoting scattered

field sources associated with this cylinder, and regular components characterised by Al
m.

The regular fields characterised by A, arise from both sources B on all other scatterers and
the radiation K due to the field source at cs. In matrix nomenclature in which the A, B and
f denote partitioned vectors, each partition of which contains coefficients in the cylindrical
harmonic expansions (2) in the vicinity of each scatterer, it may be shown that

A = SB + K, (3)

a form that typifies the solution of problems formulated with multipole methods. In (3), S
is a partitioned matrix specifying multipole contributions associated with sources on each
scatterer.
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Field continuity conditions on cylinder boundaries imply

B = RA + TQ, (4)

in which R and T denote matrices of cylindrical harmonic reflection and transmission coeffi-
cients, and Q represents a source interior to a cylinder. This, together with (3) leads to the
field identity

(I−RS)B = RK + TQ, (5)

a form that is particularly amenable to implementation on parallel systems.

To gain insight into the radiation dynamics of a photonic crystal it is necessary to compute
the LDOS at a set of points in the crystal. The set may comprise a single point, or may sample
the entire structure, yielding an LDOS map of the crystal. Of particular significance are the
effects on the radiation dynamics of perturbations in the material and geometric properties,
yielding insight into the tolerances acceptable in the manufacture of photonic crystals. In
particular, we are interested in how sensitive the LDOS is to random perturbations in the
positions of the scattering cylinders, their radii, and their refractive indices. A corresponding
computational problem is to estimate the mean LDOS corresponding to random perturbations
of these quantities with specified distributions. Monte Carlo simulation is used to estimate
the mean LDOS corresponding to perturbations with given distributions. Let ε = (εr, εa, εn)
be a partitioned vector denoting a random perturbation of the positions, radii and refractive
indices of the cylinders comprising the crystal. Denote by ρ(r, ε; ω) the LDOS of the per-
turbed crystal, by ρ(r, ω) the mean LDOS at r and ω of the perturbed crystals, and define
the ensemble average of a sample of NI perturbations by ρ̂(NI)(r; ω) def= 1

NI

∑NI
j=1 ρ(r, ε; ω).

We apply a sequence of NI pseudo-random perturbations to a given crystal structure, accu-
mulating ρ̂(NI)(r; ω) at each point r of interest. Figure 1 gives both surface and contour plots
of ρ̂(40) for a crystal design containing a waveguide. The frequency used lies in the band gap
for the crystal and the positions of the cylinders are indicated by the circles in the contour
plot. In this example, uniformly distributed perturbations of the cylinder radii were sampled,
with a maximum deviation from the design value of 10% . The remaining design parameters
were left unperturbed. The figure demonstrates the suppression of propagation within the
structure except in the waveguide, indicating that the crystal possesses substantial guiding
properties. A similar treatment with a maximum 331

3% variation in cylinder radii, however,
demonstrates the loss of these properties.
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Figure 1: Random variations of radii with maximum deviation 10% from the design value for
the crystal.
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Title

Combining Generators from Different Families

Abstract

Combined random number generators with components of the same type (e.g., linear con-
gruential or multiple recursive or Tausworthe) have been studied extensively, and specific
generators of this form are now available in several software packages. The theoretical prop-
erties of these generators tend to be easy to analyze because of their highly regular structure.
Having a lot of structure is convenient from the analysis viewpoint but can be seen as a
drawback from the ”apparent randomness” or ”unpredictability” viewpoint. It is then inter-
esting to explore how much understanding of the structure, and how much of the ”guaranteed
uniformity” of the point set produced by the generator over its full period, must be given
away in order to obtain a more complicated (or less regular) structure.

In this talk, we discuss the combination of generators from different families (e.g., a linear con-
gruential with a Tausworthe, or a linear generator with a nonlinear one), from the theoretical
and empirical viewpoints. We consider the following two main classes of combinations: (a)
a linear congruential or multiple recursive generator (LCG or MRG) combined with another
type of generator by adding the outputs modulo 1, and (b) a linear feedback shift register
(LFSR) generator combined with another type of generator via a bitwise exclusive-or.

We analyze the structural proprieties of the set Ψt of all overlapping t-tuples of successive
output values from these combined generators. We show that a certain level of uniformity
for this set can be guaranteed if the points produced by the LCG, MRG or LFSR are well
distributed in t dimension. On the other hand, these point sets Ψt have a much less regular
structure than the corresponding point sets for generators from the LCG, MRG, or LFSR
families alone. This shows up in empirical testing: Standard statistical tests require a much
larger sample size to detect the structure (or to find statistical deficiencies of the generator)
for a mixed combined generator than for a simple linear generator of comparable period
length. According to our experiments, this trend is remarkably systematic.

After summarizing our empirical results, we will suggest specific mixed combined generators
having efficient implementations.

1Research supported by NSERC-Canada Grant No. ODGP0110050
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Title

Polynomial Lattice Rules for Quasi-Monte Carlo

Abstract

Linear recurrences modulo 2 are widely used for constructing (pseudo)random number gener-
ators: Tausworthe and GFSR generators, twisted GFSRs, and Mersenne twisters are notable
examples. Here, we use them for quasi-Monte Carlo integration over the unit hypercube,
finite or infinite dimensional. Any stochastic simulation fits this framework. The idea is to
choose a recurrence with a short period length and to estimate the integral by the average
value of the integrand over all vectors of successive output values produced by the small gener-
ator, over all of its cycles. Combined generators and additional linear output transformation
(tempering) can be used to improve the equidistribution of this point set.

We examine randomizations of this scheme, discuss criteria for selecting the parameters,
and provide examples. This approach can be viewed as a polynomial version of ordinary
lattice rules for multivariate integration. Essentially all of the developments and results that
have been obtained in the context of ordinary lattice rules have their counterparts for the
polynomial version. In particular, for a certain type of randomization, a variance expression
for the integral estimator can be obtained in terms of the sum of squared Walsh coefficients
of the integrand over the dual (polynomial) lattice. This suggests specific selection criteria
(or figures of merit) for the lattice. According to our experiments, randomized polynomial
lattice rules can provide significant variance reductions compared with the standard Monte
Carlo method, even for large-dimensional problems (at least in some practical situations).
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Title

Sampling from the Hyperbolic Distribution

Abstract

The hyperbolic distribution was introduced by O. E. Barndorff-Nielsen in 1977 in connection
with the study of particle sizes. It has been observed by E. Eberlein and U. Keller in 1995 that
the hyperbolic distribution is superior to the normal distribution in modelling the logarithmic
rates of returns of a stock. The most important advantage of the hyperbolic distribution is
that it has heavy tails compared to the normal distribution. This obviously makes big changes
in market prices more likely and therefore leads to a more realistic model than the normal
model.

In most cases, if one wants to sample from a distribution given by a density, one uses so called
rejection algorithms. Though these methods work well for (pseudo) random point sets, they
are not suited for the use of low discrepancy point sets, because they (as suggested by their
name) abandon some points from the sample, thereby destroying the structure of the point
set.

Still we want to use low discrepancy point sets, since they promise better performance, that
is, faster convergence than Monte Carlo at least in low dimensions.

A much more direct approach for sampling from a given distribution is the inversion method:
Let F be a continuous, strictly increasing distribution function. Let G denote its inverse
function on (0,1). Then we can generate a random variable with distribution F by taking a
uniformly distributed random variable U and applying G.

So if we want to generate random numbers with hyperbolic distribution, all we have to do is
to find the inverse of the distribution function of the hyperbolic distribution and apply it to a
uniformly distributed sample. This, however, is no trivial task, since neither the distribution
function nor its inverse can be expressed in terms of elementary functions.

It is the objective of our paper to give a practically useful approximation to the inverse
function of the hyperbolic distribution function. By “practical” we mean that samples with
realistic sample sizes (e.g. 10 000 - 10 000 000) cannot be distinguished from “real” hyperbolic
samples with the help of statistical tests.

For the statistical test on distribution we take the Kolmogorov-Smirnov test. The reason
for this choice is that it relates the quality of our hyperbolic sample to the one-dimensional
star-discrepancy of the underlying uniformly distributed sample.
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Naturally, the difficulties in finding a good approximation to the inverse of the hyperbolic
distribution function arise near the points 0 and 1. We find a good (or better: good enough)
approximation for these domains and show how they can be glued together with a numerical
solution (found with the help of e.g. Mathematica) in the center.
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Automatic Non-Uniform Random Variate Generation

Abstract

In the last decades high quality generators for non-uniform random variates have been devel-
oped (see e.g. Devroye (1986), Dagpunar (1988), or (Fishman 1996) for surveys). However
searching through the literature on simulation (e.g. Tyszer (1999)) or web based software
repositories (like http://gams.nist.gov/ or http://www.netlib.org/) one finds only sim-
ple generators. Even for the normal distribution one finds such infamous methods like the
sum of 12 uniform random numbers (sic!). Moreover for problems as (e.g.) sampling from
the truncated normal distribution there are often no algorithms provided. When generators
for fairly uncommon distributions are required the help of an expert is necessary.

On the other hand universal (or black-box) methods have been developed to sample from large
classes of distributions (see Leydold and Hörmann (2001) or Hörmann and Leydold (2000) for
a short survey). They provide high quality generators even for non-standard distributions.
However implementing such algorithms in a reliable and robust way result in rather complex
programs. Installing and using such a program might seem too tedious for “just a random
number generator”.

The complexity of such programs arise from the setup and parts performing adaptive steps.
The actual sampling routine is very simple. Thus such automatic random variate generators
can also be used as code generators. The output of such a program is then a computer
program in any high level programming language for the generator that samples from the
desired distribution. This approach has the further advantage that it is possible to test the
quality of random variates generated by the generated code.

The concept of an Automatic Code Generator for nonuniform random numbers can reduce
the gap between theorists who create new algorithms and programmers or researches in
different scientific areas who need state-of-the-art generators (or simply any generator for an
uncommon simulation problem).

Using a web-based system it is even possible to avoid the troublesome installation of complex
libraries. Looking for the right library function can be replace by filling out forms where
the desired distribution can be selected from a menu or described by its probability density
function given as ASCII-string, e.g., max(1-x*x,0). Optional data about the distribution or
the application of the generator can be added to the input form. The result is then a (short)

1Speaker
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subroutine for a random variate generator coded in some high level programming language
that can be used in ones program by simple cut & paste. A data file with the output of this
generator can be appended to verify the code on the target maschine. Because every code
is tested before printed on the screen the user is free of obscure error messages and program
crashes that makes the usage of external code sometimes so tedious.

We have implemented such a system using the UNURAN library (Leydold, Hörmann, Janka,
and Tirler 2001) for universal non-uniform random variate generators.
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A Novel Parallel Adaptive Monte Carlo Method

for Nonlinear Poisson Equation in Semiconductor Devices

Abstract

A new Monte Carlo (MC) simulation technique for numerical solution of nonlinear Pois-
son equation in semiconductor device is presented. Based on fixed random walk algorithm,
unstructured mesh technique, and monotone iterative method, this novel adaptive MC simu-
lation of semiconductor nonlinear Poisson equation is proposed and successfully implemented
on a 16-PCs Linux cluster with message-passing interface (MPI) library. The developed
parallel MC Poisson solver tested on a submicron MOSFET device shows it has good effi-
ciency and robustness. Furthermore, the implementation demonstrates that a well-designed
load balancing MC simulation can reduce the execution time up to an order of magnitude.
Benchmarks, such as speedup and efficiency are included to illustrate the excellent parallel
performance of the method.

Conventional semiconductor device equations, such as drift diffusion, hydrodynamic and
Boltzmann transport equations require solution of Poisson equation that describes the elec-
trostatic potential distribution in the device for a specified doping profile (1). Many deter-
ministic simulation methods, e.g., finite difference, finite element, finite volume, or boundary
element methods have been developed to solve such nonlinear Poisson equation on 2D or 3D
domain. However, they are unable to analyze efficiently some critical regions in a reasonable
time because of the strong nonlinear behavior of Poisson equation and geometric complexity.
In recent years, the MC method has been applied with great success in many disciplines, for
example particle physics, quantum mechanics, heat conduction, electrical engineering, chemi-
cal reaction, and biology. This probabilistic technique could be economical when the solution
within a small region is required in the simulation domain. It also has been found to be a very
useful alternative for solving problems that have a sharp gradient near an interface, junction
layer, or a boundary point. Various MC algorithms, such as fixed random walk, floating ran-
dom walk, fixed-radius floating random walk, and Exodus methods have been proposed for
the solution of linear electrostatic problems. These non-deterministic methods solve linear
Poisson and Laplace equation in multi-dimensional rectangular, cubic, and spherical domains
with highly computational accuracy and efficiency (2; 3; 4; 5).

In this paper, for the first time a new MC algorithm for the simulation of nonlinear Poisson
equation in semiconductor device is proposed. The nonlinear Poisson equation is simulated
with a fixed random walk algorithm, unstructured mesh technique, posteriori error estimation,
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and monotone iterative methods. This novel approach has been successfully implemented on
a 16-PCs Linux cluster with MPI library. First of all, the multi-dimensional nonlinear Poisson
equation (1) is transferred into an iterative formulation (2) with monotone iterative technique
(1; 6)

∆φ = − q

εS

(
p (φ)− n (φ) + N+

D −N−
A

)
, (6)

∆φ(m+1) + λφ(m+1) =

− q

εS

(
p

(
φ(m)

)
− n

(
φ(m)

)
+ N+

D −N−
A

)
+ λφ(m), (7)

where the unknown to be solved is potential φ, q = 1.60218×10−19C is the elementary charge,
εS = 11.9ε0 is silicon permittivity, n and p are densities of free electron and hole, respectively,
N+

D , and N−
A are ionized donor and acceptor impurities, and ε0 = 8.85418 × 10−14 F/cm is

the permittivity in vacuum. The monotone iterative method has been successfully developed
and applied to solve deterministically drift-diffusion and hydrodynamic semiconductor device
simulations by us earlier (7; 8; 9). The transferred nonlinear Poisson equation (2) is then
solved with a fixed random walk algorithm for all initial grid points (see FIG. 1a). Because
the strong nonlinear property of the Poisson equation, the mesh should be refined so that
the final converged solution can be obtained efficiently. When a solution is computed (see
FIG. 1b), we do a posteriori error estimation on the computed result for each mesh cell. If
the error does not meet the tolerance, we refine the mesh. With this newer refined mesh,
the Poisson equation is solved iteratively. The iterative loops will be terminated when a
specified error criterion is reached. As shown in FIG. 2, the final refined mesh and computed
solution present a very good computational efficiency of the new adaptive MC method. This
method has good convergence behavior and it is easy for implementation and the algorithm
is inherently parallel in large scale computing. The presented method has been successfully
implemented on a 16-processors Linux-Cluster with MPI library. FIG. 3 shows the achieved
parallel speedup for a tested submicron N-MOSFET at VDS = VGS = 2V .

A novel parallel Monte Carlo simulation for nonlinear Poisson equation in semiconductor
device has been presented. Based on fixed random walk algorithm, unstructured mesh tech-
nique, a posteriori error estimation, and monotone iterative method, this novel approach has
been successfully implemented on a 16-PCs Linux cluster with MPI library. The developed
parallel MC Poisson solver tested on a submicron MOSFET device has shown it has good
efficiency and robustness. Furthermore, the practical implementation demonstrates that a
well-designed load balancing MC simulation can reduce the execution time up to an order of
magnitude.
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Title

A Fast Computation of L2 Approximations with Monte Carlo

Abstract

In this paper we describe a new variance reduction method for Monte Carlo integration
based on an iterated computation of quadratic approximations using control variates. This
computation leads to non linear unbiased estimates for each of the coefficients of the finite
L2 expansion on D. They are built by computing a correction on the residue at each step
of the algorithm using only sample values. We give estimations of the variance of these
estimates without further assumptions on the approximation basis. We will see that the
possible convergence of the algorithm depends mainly on constants K(p) ≤ p2 and C(p)
which are linked to integrals of a product of four terms of the approximation basis.

As a first application, we will study our algorithm for univariate regular functions. We will
describe the quality of the approximation in the case of a decay as C

pL of the p coefficients of
the quadratic approximation. We will first apply our algorithm to the Fourier expansion on
periodised functions for which such a property holds. Then we will compute approximations
using both Legendre and Tchebychef polynomials which satisfy the same property. Letting

f (M)(x) =
p∑

k=1

a
(M)
k ek(x)

the approximation of the finite expansion of f at the Mth step of the algorithm using N
sample values by step, we will prove that

E(a(M)
k ) =< f, ek >,

V ar(a(M)
k ) ≤ 2(µ(p)

1
p2L−1

+ µ1
K(p)M−1

NM
C(p)M )

and also that

E(
∫

D
(f(x)− f (M)(x))2dx) ≤ 2p(µ(p)

1
p2L−1

+ µ1
K(p)M−1

NM
C(p)M ) + µ2

1
p2L−1

.

We will show furthermore that some of our estimates are not far to be optimal for Ck functions
in a sense that their order are 0(N

1
2
−k−ε) compared to the optimal order which is 0(N− 1

2
−k)

where N is the number of sample values. Numerical results will be given and compared to
standard Monte Carlo integration.
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We will then extend our method to the computation of multivariate L2 approximations of
regular functions. The crucial point in this extension is to take into account the dimensional
effect. To do this, the choice of the elements of the approximation basis will be inspired from
lattice rules methods which take advantage that the multidimensional Fourier coefficients am

satisfy
|am| ≤ c

(m1m2...mQ)

for all m ∈ ZQ, where c is independent of m and m = sup(|m| , 1). We will show that the same
kind of decay also holds for Legendre and Tchebychef polynomial basis. For a given value of
d ∈ N , we will only chose the PQ,d functions in the approximation basis which coefficients
satisfy

m1m2...mQ ≤ d.

We will obtain Monte Carlo estimates which accuracy is quite similar to those obtained with
lattice rules methods that is

V ar(a(M)
k ) ≤ 2(µ1

K(PQ,d)M−1

NM
C(PQ,d)M + µ(PQ,d)

1
d2L−1−ε

)

and also

E(
∫

D
(f(x)− f (M)(x))2dx) ≤ 2PQ,d(µ(PQ,d)

1
d2L−1−ε

+

µ1
K(PQ,d)M−1

NM
C(PQ,d)M ) +

µ2

d2L−1−ε

The use of orthogonal polynomials allows to get rid of the artificial effects of periodisation
on the constant c. We will also see that the version of our algorithm using Tchebychef
polynomials is the most efficient because it reconcile the advantages of each of the other two
basis: good accuracy and fast convergence. Numerical results will be comparable to those
obtained with a numerical method developped in [1] that achieve the optimal order 0(N− 1

2
− k

Q )
in the computation of Q-dimensional integrals. The main advantage of our algorithm toward
this method is that it also gives a spectral approximation of the function with only a few terms.
We will use this advantage by giving spectral approximations of integral form functions. We
will also use it in the numerical solution of Fredholm integral equations of the second kind
with regular kernels.
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Title

A Feynman-Kac Path-Integral Implementation for Poisson’s Equation
Using an h-conditioned Green’s Function

Abstract

Since Müller proposed the “walk on spheres” (WOS) method for solving the Dirichlet bound-
ary value problems for the Laplace equation, WOS has been a popular method. In addition,
this random-walk based approach has been extended to solve other, more complicated, par-
tial differential equations including Poisson’s equation, and the linearized Poisson-Boltzmann
equation. In WOS, instead of using detailed Brownian trajectories inside the domain, discrete
jumps are made using the uniform first-passage probability distribution of the sphere. In this
paper, this WOS method is combined with the Feynman-Kac formula to solve the Dirichlet
boundary value problem for Poisson’s equation.

Our implementation is based on the well-known Feynman-Kac representation of the solu-
tion to the Dirichlet problem for Poisson’s equation. Recall that the Dirichlet problem for
Poisson’s equation is:

1
2
∆u(x) = −q(x), x ∈ Ω (1)

u(x) = f(x), x ∈ ∂Ω. (2)

The solution to this problem, given in the form of the path-integral with respect to standard
Brownian motion Xx

t , is as follows:

u(x) = E[
∫ τx

D

0
q(Xx

t )dt] + E[f(Xx
τx
D
)]. (3)

Here τx
D = {t : Xx

t ∈ ∂Ω} is the first passage time and Xx
τx
D

is the first passage location on
the boundary, ∂Ω.

Instead of simulating the detailed irregular motion of the Brownian trajectories, we use the
h-conditioned Green’s function for a ball with WOS as a probability density function. The
h-conditioned Green’s function gives the probability density distribution of the Brownian
trajectory inside the ball during its passage from the center to the boundary. We construct
a Brownian trajectory as a sequence of discrete jumps from ball centers to ball surfaces. By
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using the h-conditioned Green’s function, K(x, z), the first term of Eq. 3 for the ith ball of
a WOS (Brownian) trajectory becomes:

∫

Bi

q(x)K(x, z)dx. (4)

Here, Bi is the ith ball and z is the first passage location on the surface of the ball, making
the preceding a volume integral.

Eq. 4 readily permits the use of WOS to eliminate the need to compute the detailed Brow-
nian trajectory. Instead, a series of discrete jumps in continuous space terminating on the
boundary, ∂Ω, is used. Jumping from ball to ball never permits a trajectory to land exactly
on the boundary. Thus we use the standard WOS approach of “fattening” the boundary by
ε to create a capture region that is used to terminate the walk. The error associated with
this approximation has been theoretically estimated in previous WOS studies.

We wish to compute the solution to the Dirichlet problem for Poisson’s equation at x0.
For each Brownian trajectory starting at x0, with an ε-absorption layer, we accumulate the
internal contribution for each ball and the functional value of the boundary condition at the
final exit location on ∂Ω. And so, an estimate for the solution at x0 is given by the statistic

SN =
1
N

N∑

i=1

Zi, (5)

where N is the number of trajectories and each statistic, Zi, is given by

Zi =
ni∑

j=1

[
∫

B(xj,rj)
q(x)K(x, z)dx + f(Xx

τx
D
)]. (6)

Here, ni is the number of WOS steps needed for the ith Brownian trajectory to terminate
in the ε-absorption layer, xj is the center of the jth ball of radius rj , and Xx

τx
D

is the first
passage location on the boundary, ∂Ω.

We demonstrate our Feynman-Kac implementation by solving numerically a boundary value
problem for Poisson’s equation. For this two-dimensional problem, the h-conditioned Green’s
function was obtained via simulation and expressed in analytic form. It should be noted that
the cumulative radial distribution found here is the same as that used previously by other
researchers, and the analytic form of the conditional cumulative angular distribution comes
from the two-dimensional Poisson kernel.

The ith estimate of the solution to the Poisson’s equation is given by:

Zi =
ni∑

j=1

∫

B(xj,rj)
q(x)K(x, z)dx + f(Xx

τx
D
). (7)

Here, ni is the number of WOS steps needed for the ith Brownian trajectory to terminate
in the ε-absorption layer, xj is the center of the jth circle of radius rj and Xx

τx
D

is the first

160



passage location on the boundary, ∂Ω. Instead of integrating the first term of Eq. 7, we can
use the “one-point random estimation inside the sphere” method:

Zi =
ni∑

j=1

r2
j

4
E[q(Yj)] + f(Xx

τx
D
). (8)

Here, Yj is the sampling location inside the jth circle. At first, the radial position is selected
according to the cumulative radial density and for the given radial position the angular
position is selected according to the conditional cumulative angular distribution.

The error from the ε-absorption layer can be investigated empirically if we have enough
trajectories so that the statistical sampling error is much smaller than the error from the
ε-absorption layer. It turns out that the ε-layer error grows linearly in ε for small ε.

Recently, we developed a modified WOS algorithm for solving the linearized Poisson-Boltzmann
equation in a domain Ω:

∆ψ(x) = κ2ψ(x), x ∈ Ω, (9)

ψ(x) = ψ0(x), x ∈ ∂Ω. (10)

Here, κ is called the inverse Debye length. We used a survival probability, which was obtained
by reinterpreting a weight function in a previously modified WOS method. This survival
probability enabled us to terminate some Brownian trajectories during WOS steps. This
method can be combined with the method described in this paper to solve the Dirichlet
boundary value problem for ∆ψ(x) − κ2ψ(x) = −g(x). This will be the subject of a future
study.

Also, it should be noted that the Feynman-Kac path-integral representation is general and
the h-conditioned Green’s function can be obtained for any geometry via simulation. This
opens up the possibility of removing the ε-absorption layer in WOS methods.
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Title

A Non-empirical Test on the Weight of the Pseudorandom
Number Generators Linear over F2

Abstract

There are a lot of pseudorandom number generators. Some are known to be defective, and
some seem to be good.

GFSRs based on three-term relations are known to have statistical nonsymmetricity between
0 and 1, and to be rejected by χ2-test on the goodness-of-fit to the binomial distribution, for
more than thirty years.

However, these warnings were not loud enough to reach the users. These three-term GF-
SRs were introduced in 1981 to the computational physics community by Kirkpatrick et.al.
suggesting the recursion xj = xj−103 ⊕ xj−250, and became fairly popular. In middle 80’s,
physicists began to find the failure of these generators in simulations of physical models,
such as Ising models by Hoogland et.al., Ferrenberg et.al., and random walks by Grassberger.
These physical models are simplified and proposed as tests of randomness by Vattulainen
et.al., which we call physical tests here.

In these works some physicists’ proposed two ways of improving GFSR: one is to increase the
degree of the recurrence, and the other is to use five or more-term relations. These follow from
an intuitive observation that few-term relations in a short range should lead to a deviation,
and that increasing the number of terms or the range of the correlation will decrease the
deviation. These improvements have been found to be effective in the physical tests.

However, it is not clear which degree is enough, or how many terms are enough for the required
randomness. Five-term relations of degree 89 behave well for 106 samples, but are rejected
for 108 samples by a random walk test conducted by Vattulainen et.al. A five-term relation of
degree 1279 passed the test even for 109 samples. But... is this enough? The computational
power of the machines is increasing rapidly. Will some defect of such a generator be revealed
in the future? Or is it impossible for any future machine?

These physical tests are interesting in that they clearly exhibit the defects of random number
generators in practical computational physics. However, they are not powerful in selecting
good generators. Actually, these tests reject only (1) three-term GFSRs, (2) five-term GFSRs
with small degree, and (3) linear congruential generators with poor spectral properties or short
periods. All these generators are known to fail in some simple statistical tests. Also, these

1Research supported by the Ministry of Education Kakenhi Grant, No.13440005.
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physical tests cannot predict what will occur if we take the sample size larger and larger,
exceeding the ability of present computers.

In this talk, we shall introduce a theoretical test on the distribution of 1s and 0s in the bits
of the sequence, named weight discrepancy test. This is not an empirical test but a test on
the full-period property of the generator, like the spectral test or the k-distribution test.
It predicts with high precision the sample size for which the generator is rejected by the
weight distribution test, which is a classical empirical test equivalent to a random-walk test.
For example, the generator MT521 is shown to be quite safe with respect to this test, since
it would require 10156 samples to reject its output, whereas the generator R(11, 39, 95, 218)
which passed all the physical tests done by Ziff et.al. is rejected if we take the sample size
> 600, 000, 000 (and we confirmed this by empirical tests).

For simplicity, assume a random bit-sequence. For example, we may take the most significant
bit of each of generated words, or take the most significant four bits of each of generated words
and concatenate them.

Take m consecutive generated bits. The weight of this m-tuple is by definition the number of
1’s among the m bits. Thus, it should conform to the binomial distribution if the sequence
is uniformly and independently random. Group the set of weights into ν + 1 categories, i.e.,
partition the set {0, 1, . . . , m} into ν + 1 disjoint intervals

S0 ∪ S1 ∪ S2 ∪ · · · ∪ Sν = {0, 1, 2, . . . , m}.

Let pk (k = 0, 1, . . . , ν) be the probability that the weight falls into the k-th category Sk.

Thus pk =
∑

i∈Sk

(
m

i

)
/2m. We choose a grouping so that the probability pk is not too small

for every k (e.g., if the sample size is N , then Npk is not less than, say, 10), as usual for
χ2-tests.

However, actually, the pseudorandom bit sequence is generated by a pseudo random number
generator. We denote by qk the probability that weight is k in the pseudorandom sequence,
under the assumption that the initial seed is uniformly randomly selected.

The following value δ, called the χ2-discrepancy, measures the distance between ideal pk and
realized qk:

δ :=
m∑

k=0

(qk − pk)2/pk.

The weight discrepancy test computes this χ2-discrepancy δ.

This value δ is a good index of the deviation of the generator closely related to the χ2-
test. Let XN be the result (i.e., the χ2-value) of the χ2-test for goodness-of-fit between the
observed weights and the binomial distribution for N samples of m-tuples. This XN is a
random variable under the assumption that the initial seed is uniformly randomly selected,
so we may consider its expectation E(XN ).

A simple computation tells that

|E(XN )− (ν + Nδ)| ≤ ν max
k=0,...,ν

∣∣∣∣1−
qk

pk

∣∣∣∣.
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This shows that under the condition that qk is close to pk, which is always true for usable
random number generators, E(XN ) is approximated by ν + Nδ regardlessly of each qk.

Assume that δ is computed. By looking at the table of the χ2-distribution with degree of
freedom ν, we can compute N for which the sequence is rejected in average with significance
level, say, 0.01, and thus we can estimate the dangerous sample size for which the pseudo
random number shows deviation on the weight.

Computing δ seems to be NP-complete in general, but we use MacWilliams identity in the
coding theory to obtain δ under some condition, and actually we obtained δ for various
generators.

A smaller δ means a better fit to the theoretical distribution, so we can choose the best
one from a set of generators, even if they pass the physical tests. In this regard, our test is
similar to the spectral test and the k-distribution test. Moreover, our test gives an estimate
for the dangerous/safe sample size, which is sometimes far beyond the power of the present
computers.

We list δ for some common generators. We compare the results of experimental χ2-tests with
those expected from the value of δ. They show good accordance. We compute dangerous/safe
sample size N for these generators, and show that some (Mersenne Twister, Combined Taus-
worthe,...) have astronomical N but others not. For example, Ziff’s pentanomial GFSR
R(216, 337, 579, 1279) will be rejected for the sample size 1.7× 1013.
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Title

Application of the Metropolis-Algorithm to Problems of Redudancy
Elimination in Functional and Parametric Tests of Integrated Circuits

Abstract

Integrated Circuits (IC’s) are tested with respect to two different groups of tests. On the one
hand there are functional tests which may either pass or fail, on the other hand there are
parametric tests which usually result in a real number. Tests are costly procedures and in any
case it is desirable to minimize testing effort, while, of course not loosing any information. It
is obvious that reducing testing cost by dropping a non-optimized subset of tests will have an
unpredictable impact on the outgoing quality of the population of IC’s. Assuming, however,
that tests are correlated among each other, one can hope that a certain subset of the full
set of tests can be found such that, when eliminated, will not generate more than a given
rate of defectives, usually in parts per million (ppm), while, on the other hand absorbing a
maximal amount of testing time. A subset having this property with x ppm will be called
x-redundant.

In the case of purely functional tests one usually finds a subset of defective IC’s and a
subset of intact IC’s in every population. Any IC with at least one test failing is declared
defective. In a production environment an IC is not tested beyond occurrence of the first
defective test (First Failure Stop Strategy). In an experimental environment every function
on each IC is tested (Full Test Strategy). In this paper a Full Test Strategy is assumed.
Finding an x-redundant subset requires solving a combinatorial optimization problem. The
type of problem is a set-covering problem. The objective function is the overall residual
testing time, the dominating constraint consists in observing the upper bound of x ppm on
the expected outgoing population quality and the decision variables are, of course, (0 − 1)
indicator variables on each test, where 0 stands for leaving the test in the set and 1 means
dropping the test. The solution procedure is a Simulated Annealing approach, whereby the
Metropolis algorithm is applied to each intermediate solution. Local search is controlled
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by a set of operators acting on each intermediate redundant subset, making sure that the
cardinality of a subset can approximately grow, remain constant and decrease with equal
probabilities of 1

3 . The algorithm has been applied to real IC functional test data on various
instances and revealed substantial redundancies, i.e. potential testing time reductions. The
input data to the functional test reduction algorithm are a binary, rectangular matrix of IC
tests, a vector of real numbers representing the testing times in milliseconds, the tolerated
outgoing rate defective X and the yield of the IC population under consideration.

The case of parametric tests has so far been solved only theoretically. It is, however, of
utmost industrial interest and therefore, intensive mathematical and algorithmic research is
currently underway. The second part of this paper reports on pertinent results. The starting
point is in observing that a finite set of tests can be modeled by a multivariate normally
distributed random variable with a given covariance matrix and a vector of mean values.
If this assumption is correct, the corresponding multivariate density can be formulated in
closed form. Next, it is mandatory to note that even in the case of parametric tests, for
each test an allowed interval is being defined such that an intact IC is one with each test
result simultaneously in its proper, allowed region and a defective IC being one, with one or
more test results being outside the allowed region. It is now straightforward to observe that
the parametric case can be expressed as a functional case whereby the density of ”1” or ”0”
entries depends on the definition of allowed regions on the tests. Of course, tighter tolerance
limits will account for less ”1”s and vice versa. But also, if that paradigm is unacceptable,
the question may be asked, which of the test results will be in their respective allowed regions
with a certain conditional probability of P greater than 1 − x · 10−6, when the underlying
tests are eliminated, given the remaining test results are observed to lie collectively in their
allowed regions. Solving this question again yields a combinatorial optimization problem of
the set covering type with the objective function being the residual testing cost for an IC as
above, the constraint being given by the restriction on the conditional probability P and the
decision variables defined as above. There are two severe performance obstacles to applying
this procedure. Obstacle number 1 is the fact that, for each intermediate solution, a highly
dimensional matrix must be numerically inverted. Obstacle number 2 originates from the fact
that numerical integration of multiple integrals must be computed. While the latter problem
can be overcome by using again a Monte Carlo method, the former constitutes an open
question in numerical applied linear algebra: Is there any way to utilize the fact that a matrix
inversion has been found, if this matrix is modified by subtracting a usually small number
of lines and columns and by adding another usually small number of lines and columns ?
Even if this question cannot be answered to the affirmative, the Metropolis algorithm can,
when applied to this situation, contribute to substantial testing time reductions, since there
is no need for the algorithm to have response times in the regions from seconds to minutes,
but can, if necessary, run for two or more days, since the result, once known, may be valid
for months. The input data are as above, except that the matrix of test results has now real
number entries as opposed to ”1”s and ”0”s.

Experimental results will be shown.
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Title

Experimental Studies for the Error Estimation Methods of
Quasi-Monte Carlo Integrations

Abstract

The study of error estimation methods for quasi-Monte Carlo integrations attracts both
theoretical and practical attentions currently. Several methods were proposed in recent years,
and almost all of them are based on the idea of combination of Monte Carlo and quasi-Monte
Carlo methods. They are often called “randomized quasi-Monte Carlo” methods, where the
error of the numerical integration is estimated by the repetition of independent quasi-Monte
Carlo samplings.

In [1] we presented some theoretical considerations on the error estimation methods, i.e.
scrambling and randomly shifting methods, of quasi-Monte Carlo integrations and reported
several numerical experimental results on Genz’s test functions. Our experimental results
show that both methods give reliable estimations of the errors.

In this talk we report some extensions to the results of our previous report [1]. Our extension is
threefold: applying error estimation methods to real-world problems in financial engineering,
increasing the dimension of the problems, and introducing various (t, s)-sequences in different
bases into numerical experiments.

First we use the pricing problems of some financial derivatives, i.e., barrier options, Asian
options, and look-back options are used to test the error estimation methods of QMC. These
option pricing problems contain multidimensional integration problems (so-called path in-
tegrals) and they are one of the current main applications of QMC. Using those real-world
problems we compare several error estimation methods in their reliability and precision of the
estimated errors. Especially from the financial engineering viewpoint, above options raise the
interest in their “path-dependent” properties. We examine how the different path-dependent
properties of those options affect the efficiency of the error estimation methods.

Second we examine higher dimensional cases than in our previous report [1]. This extension
follows naturally, because our new examples (option pricing problems) require several hundred
dimensional integrals.

Third we compare several kinds of quasirandom sequences for each fixed dimension. In our
previous report we examined two kinds of sequences, i.e. Sobol’ sequence and Faure sequence,

1Research supported by Grant-in-Aid for Encouragement of Young Scientists, Japan Society for the Pro-
motion of Science

2Research supported by Grant-in-Aid for Exploratory Research, Japan Society for the Promotion of Science
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for the same problems. In Niederreiter’s general framework [2], Sobol’ sequence is a (t, s)-
sequence in base 2, and Faure sequence is a (0, s)-sequence in base p, where p is the smallest
prime number greater than or equal to the dimension s. A natural question arises: how the
selection of the base other than 2 or p affects the efficiency of the integration? We investigate
this problem in terms of randomized QMC. We generate (t, s)-sequences in various bases
following the Niederreiter’s special construction [2], and then use a randomized version of
them to obtain the error estimation in each example. Our analysis can be considered as
an average case experimental analysis of the effect of base selection in (t, s)-sequence for
numerical integrations.
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Defects of Commonly Used Pseudorandom Number Generators

Abstract

The rapid growth of the computational performance of the machines enables large-scale Monte
Carlo simulations. This reveals hidden defects of some of commonly used generators, and
underlines the necessity of high-quality and high-speed pseudorandom number generators.

LCGs with short period (' 232) are classically known to be defective, because of their coarse
lattice structure in high dimensions. Trinomial based GFSRs have a defect on the distribution
of weights, which turns out to give an erroneous result in random walks and Ising model
simulations, as was found out during the 1980–1990 period.

Since then, a lot of “improved” pseudorandom number generators have been proposed. We
shall test these generators both theoretically and empirically, and make an extensive com-
parison both on the randomness and the speed.

These generators include: a very common lagged Fibonacci generator known as random() (in-
troduced in 4.2BSD OS and widely spread in C-library in many versions of UNIX), trinomial-
based GFSR proposed by Lewis and Payne in 1973, pentanomial-based GFSR proposed in
many articles such as Ziff’s (1998), twisted GFSR known as Mersenne Twister by Kurita,
the author and Matsumoto in 1992, 1994 and 1998, a long period LCG like drand48, add-
with-carry or subtract-with-borrow known as RCARRY introduced by Marsaglia and Zaman
in 1991, its improvement RANLUX which discards large part of the output of RCARRY
by Lüscher and James in 1994, and a similar improvement, called ran array, of the lagged
Fibonacci by Knuth in 1997, a rotated lagged-Fibonacci ranrot by Agner in 1999 and vari-
ous combined generators such as a combined LCG clcg4 by L’Ecuyer and Andres in 1997,
a combined multiple recursive generator combmrg2 by L’Ecuyer in 1999, a combined LFSR
lfsr113 by L’Ecuyer in 1999, a combined lagged-Fibonacci RANMAR by Marsaglia and
Zaman in 1990.

A difficulty in such a comparison is that these improved generators pass all classical tests such
as those in the Diehard battery by Marsaglia, although some of them show nonrandomness
in large scale Monte Carlo simulations, i.e., if we take some larger sample size than those in
Diehard test, then sometimes the generator shows a defect.

Consequently, our strategy is two-folded:

1. To find “natural” empirical tests which can detect the deviation of generators which
pass the Diehard test but fail in some Monte Carlo simulation.
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2. To find theoretical tests corresponding to the above tests, which estimate the dangerous
sample size over which the empirical test will reject the generator, as well as the safe
sample size.

(The idea to estimate the dangerous sample size is appeared in (1)(2)(3)(4).) These danger-
ous/safe sample sizes may be astronomical and then the generator would be empirically safe.
For other generators, the size may be reachable by machines in the near future. Consequently,
we can select “the best generators” in this sense.

There is a case where this is possible: if the generator is F2-linear and the test is the weight
distribution test (this will be explained in the talk by Matsumoto). This test shows, for
example, that pentanomial-based GFSR is far better than trinomial-based one, but still one
can reject it by an experimental statistical test if the sample size is more than the dangerous
sample size, which is often computable; e.g., it is ' 1013 for the pentanomial with degree
= 1279. Other such combinations are explained in (1)(2)(3)(4).

We shall generalize this idea. We fix a pseudorandom number generator G and assume
that G generates a sequence of uniform pseudorandom numbers, in the interval I. If G
is a real number generator, then I is usually [0, 1), and if it is an integer generator, I is
{0, 1, 2, . . . ,W − 1} for a suitable integer W . Let S be the set of possible initial seeds of G.
Assume that m consecutive outputs of G are used. Then, G can be simply regarded as a
function Φ : S → Im.

Now assume that the initial seed is uniformly randomly selected from the discrete set S. This
makes S into a probability space, and Φ is a vector-valued random variable.

We fix some test function f : Im → R. Under the null-hypothesis that the generated sequence
is truly random, the distribution function of the random variable f ◦Φ is identical with that
of f , where Im is regarded as a probability space with the uniform measure on Im.

In our previous talk, I is the two element field F2, and f : Fm
2 → R is the weight function.

In this talk we study the case where I is [0, 1) and f is the sum over the m-tuples, i.e.,

f(x1, . . . , xm) := x1 + · · ·+ xm,

and measure the difference between the two random variables f ◦Φ and f , by χ2-discrepancy.
We apply the result to lagged Fibonacci and subtract-with-borrow generators.

We also point out specific defects of some widely used generators. For example, the original
initialization scheme for random() in 4.2BSD has a fatal problem so that the sequence of the
least significant bit of the outputs has only four possible patterns after each initialization,
independently of the choice of the initial seeds. This defect is fixed in some OS including
FreeBSD, but is left as it is in many OS like Solaris.
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How To Build Very Large Percolation Clusters
with Very Little Computer Memory

Abstract

Percolation is a standard model for disordered systems (1; 2). In percolation systems, sites
or bonds on a lattice are populated with probability p. The value of p at which infinite
clusters are formed is known as the critical probability or percolation threshold pc. Using
Monte Carlo simulations to construct percolation clusters, one can estimate the percolation
threshold and the exponents of quantities which obey power law scaling at the critical point.
In order that finite size effects do not play a role, the lattice must be large enough such that
the clusters that are grown do not reach the boundaries of the lattice. Because corrections-
to-scaling decrease with the size of the clusters built, the larger the value of the clusters
that can be built the more accurately we can estimate percolation thresholds and critical
exponents. The limitations on the size to which the clusters can be grown have been the
computer memory available to model the lattice and the computer processing power needed
to build these clusters. The method of “data blocking” (3; 4) has helped ameliorate the need
for large amounts of memory. In this method, the lattice is logically divided into blocks;
memory for a block is not allocated until the lattice grows into that block. The data blocking
method has been used recently to obtain precise estimates for the percolation threshold and
associated exponents for bond and site percolation on a number of lattices (4; 5). Ultimately,
however, although sufficient computer power is available to build larger clusters, the cluster
size is limited by the amount of memory available. This becomes particularly true as the
dimension of the lattice d increases since at criticality the cluster becomes less dense as d
increases. To reach the same cluster mass we must have larger lattices.

In this paper we describe a method of constructing clusters which dramatically reduces the
memory requirements needed to grow large clusters relative to previous methods. We use the
Leath method(6) to construct clusters, but we keep track of which bonds are occupied and
which sites have been visited by a method different from that traditionally used. Traditionally,
this state information is stored in an array of size equal to the number of lattice sites. Vollmayr
(7) eliminated the use of this array, storing status of visited sites in a data structure thus
reducing memory requirements to grow a cluster of mass s to O(s). We extend the approach
of Ref. (7) further, reducing the memory required to O(sθ) where θ ranges from 0.4 for
2-dimensional lattices to 0.5 for 6- (or higher)-dimensional lattices. Our method involves:
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(i) using a special random number generator.

(ii) using a hashing algorithm to access a table of visited sites.

(iii) using a new algorithm to build the cluster which limits the maximum number of sites
for which we maintain state information to a number of the order of the number of sites in
the largest chemical shell of the cluster being created.

Using the method described here, relative to computer processing power available today and
in the foreseeable future, computer memory is no longer a constraint on building percolation
clusters near the percolation threshold. The critical computer resource thus becomes solely
processing power. For example, by extrapolating from our simulations, we find that with
our method, with less than 108 bytes of memory, we could build a 5D cluster of 1012 sites,
which(with traditional methods) would have required a lattice of 1017 sites. But the time
to build a single trillion-site cluster would be about 2000 hours on current workstations.
As processor speeds increase, our technique for reducing memory usage should allow critical
exponents and constants to be determined with greater precision. Current techniques of
growing clusters, including the one described in this paper, require computer processing
resource of O(s), where s is the size of the cluster grown.

Using our method of building large clusters, we estimate dmin, the exponent relating the
shortest path ` to the Euclidean distance r, for hypercubic lattices in 4 and 5 dimensions.
The study of critical properties in higher dimensions is important because one can use the
results to test relations which are conjectured to hold in all dimensions (hyperscaling rela-
tions) and exponents which are believed to be the same in all dimensions (superuniversal
exponents). The current best estimates of dmin for 4 and 5 dimensions, 1.63 ± 0.03(8) and
1.8 (1), respectively, are of relatively low precision compared to the estimates available in 2
and 3 dimensions 1.1307 ± 0.0004 (9; 10; 11) and 1.374 ± 0.006 (12), respectively. We find
dmin = 1.607± 0.005 (4D) and dmin = 1.812± 0.006 (5D). Thus our estimates of dmin are of
higher accuracy than the existing ones and have accuracy comparable to that for the estimate
of dmin in 3 dimensions.
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Efficient Simulation of a Rare Event in an Infinite Server Queue

Abstract

Let be given an infinite server queue with Poisson arrivals and generally distributed service
times. Suppose that at time 0 the system is empty. Then we consider the problem that the
number of busy servers reaches level B for the first time in a given time interval [T1, T2]. The
question is to determine its probability.

Infinite server queues are models popping up in inventory systems such as (S−1, S), that is lot-
for-lot ordering. Also, in telecommunication one uses infinite server queues to analyse system
performance on call level. The problem described above is of interest in these applications
since it concerns undesirable events: in inventory it means a stock-out, in telecommunication
it means a call loss. By setting the target level B high, one tries to avoid these situations. Of
course, because we deal with a stochastic system, there is always a — small — probability of
occurence. So, we deal with a rare event.

This particular rare event problem is generally not solved. In case of exponential servers, the
Laplace Transform of the first passage time can be expressed in a recurrence relation. Then,
numerical inversion should give the probability. The disadvantage of this approach is that it
is applicable for exponential servers only, and that the recursion runs in numerical problems
since the recursion level equals the large B.

On the other hand, a simulation procedure is a general, easy-to-do, stable method which
guarantees to give estimates of the probability. It is general in the sense that the computer
program should be written in way that it can be executed for different service times, such as
deterministic, Coxian, or Erlang. However, when dealing with a rare event, an accurate esti-
mate requires long simulation times. In fact, it will take too long for estimating probabilities
of the order 10−6 and smaller. In this paper we consider the method of importance sampling
as a variance reduction technique, thus obtaining faster an accurate estimate.

To be more specific, since the target level B is high we denote B = nb, where b is fixed and
n becomes large. In the same manner, the Poisson arrival rate is λ = nγ for fixed γ. The
factor n is a scaling factor with fluid limit implications. Finally, the service rate equals µ.
We impose the requirement γ/µ < b for the following reason. Suppose that the service is
exponentially distributed. Let Xn(t) be the number of occupied servers in the n-system at
time t. Then the fluid limit Xn(t)/n → φm(t) holds (n →∞; for each t; in probability), where
φm is a deterministic function, called the most likely behavior. Furthermore, φm(t) → γ/µ
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when t →∞. Thus, we see what happens for the fraction of occupied servers Xn(t)/B when
n and t becomes large: Xn(t)/B = Xn(t)/(nb) → γ/(µb) < 1. This says that for large target
levels the system size will stay below this level, eventually. Consequently, since ordinary
Monte Carlo simulations generate sample paths of which almost all stay close to the most
likely behavior φm, it takes a very long simulation before enough observations of the event
have occurred.

In the paper we give the technical details of these matters. Also, applying large deviations,
we find the most likely way how the rare event occurs. This is a deterministic function φ∗

such that, conditionally on the event that the rare event occurs, Xn(t)/n → φ∗(t) (n → ∞;
in probability). The idea of importance sampling is to change the underlying probability
measure so that the function φ∗ becomes the most likely behavior of the system. Thus, in the
importance sampling simulations, the majority of generated sample paths will show the event
of hitting the target level (in the target time interval [T1, T2]!). Applying large deviations,
we prove that this method yields an asymptotically optimal estimator.

The new probability measure for the importance sampling simulations induces new interar-
rival time distributions and service time distributions which are exponentially tilted versions
of the original distributions. However, since the optimal path to the target level (the function
φ∗) is not a straight line, the tilting factor is updated continuously. In the implementation of
the method, we update the factor only after each arrival or departure in the queueing process.
The simulation results indicate that the estimator remains nearly asymptotically optimal.

As said above, the exact analysis of this approach is based on large deviations and can be
done easily in case the service times are exponentially distributed. The optimal path to the
target level is determined similarly as in the Erlang model (see Chapter 12 in [1], or [2]). For
more general service time distributions this approach should be adopted, but, generally no
exact results are known. However, in case of deterministic service times, when we observe the
system state Xn(t) at the times of departures of customers, we obtain a discrete-time Markov
chain. This chain can be analysed, specifically, its most likely behavior, and the optimal path
to high levels. Then, similarly as in the exponential case, importance sampling simulations
are possible where the most likely behavior under the new measure mimics the optimal path.
Since the service times are deterministic, only the distributions of the interarrival times are
exponentailly tilted, again continuously. The main difference with the exponential case is
that the tilting factors can not be given exact, but have to be calculated numerically.
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Light Propagation Modelling in Biological Tissue
by Advanced Monte Carlo Methods

Abstract

Laser techniques applied for diagnostic or therapeutic purposes require the detailed knowledge
of the light path in tissue and diagnostic apparatus. In this paper algorithms are described
which allow to analyse light propagation in complex 3D structures by advanced Monte Carlo
techniques. The Monte Carlo program which has been developed in this context creates
light trajectories as a function of time for wavelength dependent optical parameters. The
photon propagation follows the classical scheme of neutral particle random walks allowing
for absorption and different anisotropic scattering models (e.g.the Henyey-Greenstein phase
function) as well as refraction and reflection at medium boundaries. Also an algorithm
dealing with fluorescens has been incorporated. The geometry routine can handle multiple
media bounded by quadratic surfaces used singly or in combinations.

The score functions are light flux, absorption and energy deposition in geometrical regions and
photon transmission (temporal and spectral radiance) between specified geometrical regions.

As an unusual feature the program can optionally calculate derivatives and perturbations [1]
of the photon density (at region boundaries) with respect to a density change in specified
regions. This feature is based on differential operator sampling and aims at the calculation
of small effects which can not be estimated by classical (analogue) Monte Carlo techniques.
One of the essential quantities calculated is the sensitivity

S(Ra,i,γ) =
∂ψ(Ra, Ti)

ψ(Ra, Ti)∂ργ

where ψ(Ra, Ti) is the area normalized number of photons crossing the surface which separates
region a from region b, Ti the i− th time interval (Ti : ti ≤ t < ti+1) and ργ the normalized
material density of region γ.

Furthermore, the new program disposes of point detector algorithms which allow for the
calculation of the radiance and its sensitivity at positions specified somewhere in the system.
In particular the track point estimator (developed by the author et al.[2]) looks promising
as it does not suffer of the r−2 singularity r being the distance between the collision point
and the detector) typical for the last collision estimator. As shown by the same authors this
algorithm has a 1/sin(x) ≈ 1/x singularity and is particularly suited for problems in which
strongly collimated particle beams are considered.
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In some cases the uncertainty of estimates of particular interest can be decreased considerably
replacing the analogue random walk procedure by the use of a forced collision scheme.

Prototypical examples explain the different features of the program including the analysis of
a series of problems described in the literature and solved by Finite Element methods.

To illustrate the key feature of the program the following model has been considered: A tissue
sample 10x5x5 cm (as shown in the figure) in which a spherical region (rγ = 0.5cm) specified
in the centre is analysed in terms of the sensitivities of the transmittance on its surface.
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The sensitivities are calculated with respect to the density of the central spherical region
for time bins and the numbered rings specified on top and side of the tissue sample. In
this example the sensitivities provide a quantitative estimate for the fractional change of the
photon density as a function of a fractional change of the density in the spherical region.

The estimates listed in both tables have been obtained following only 200.000 photon histories.
Numerical values of the derivatives are listed in the following table:
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Time
Interval

transition to
detector Rg:

1 2 3 4 5 6

0 - ∞ ψ 0.025 0.025 0.044 0.045 0.039 0.0089
∂ψ/(ψ∂ρ) - 0.181 - 0.270 - 0.209 - 0.167 - 0.134 0.048

0 -
2.3E-10

ψ 0.010 0.008 0.010 4.6E-3 1.1E-3 1.1E-6
∂ψ/(ψ∂ρ) - 0.63 - 0.523 - 0.59 - 0.634 - 0.77 0.078

2.3E-10
2.7E-10

ψ 0.014 0.015 0.033 0.036 0.037 6.1E-3
∂ψ/(ψ∂ρ) - 0.094 - 0.10 - 0.099 - 0.153 - 0.13 -0.021

2.7E-10
-1.E-9

ψ 1.6E-4 9.5E-5 4.8E-4 6.8E-4 4.8E-4 2.5E-3
∂ψ/(ψ∂ρ) 0.045 0.14 0.047 -0.016 - 0.092 0.067

Transmission into Detector Regions on ”Top” of Tissue Sample

Time dependence of laser-beam response functions;
Shortest possible path: 2.2365E-10.
The Radii for the Zylindrical Detector Regions are:
0.4472, 0.6325, 0.7746, 0.8944, 1.0 cm

In this table ψ is the number of photons (per cm2 and per source photon) penetrating a
specified surface-element. In the circular region 1 and time interval 0− 2.3× 10−10 ψ would
-for example- be 0.010. These are photons which mainly have to traverse the spherical region
being subject of the change of density.

In the example above the sensitivity ∂ψ/(ψ∂ρ) says that a positive 1% density change in
the 1cm radius sphere would lead to a 0.63% decrease of the number of photons penetrating
surface element 1. (Notice the negative sign).

In the next table the same estimates are shown for the regions 7 to 11. They are on a plane
perpendicular to the circular regions 1 to 6 and face directly the central sphere. Here one
observes that the sensitivity has a positive value for the time interval 0−2.3×10−10. This can
be explained by the fact that increasing the number of scatterings in the central sphere the
number of photons scattered to the ”sides” is increased. As one would expect from qualitative
considerations, a density increase favours the longer time intervals.
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Time
Interval

transition to
detector Rg:

7 8 9 10 11

0 -
2.3E-10

transmission 0.0038 .0035 0.0070 0.0068 .0062

sensitivity 0.015 0.037 0.018 0.028 0.021

2.3E-10-
2.7E-10

transmission 1.1E-4 1.1E-4 3.3E-4 3.2E-4 3.2E-4

sensitivity 0.385 0.73 - 0.061 0.45 0.45

2.7E-10
- 1.E-9

transmission 1.4E-4 1.9E-4 3.2E-4 3.7E-4 3.2E-4

sensitivity 0.220 - 0.0012 - 0.14 - 0.23 - 0.028

Detector Responses at the ”side” of the Tissue Sample

Time dependence of laser-beam response functions;
Radii for the zylindrical detector regions:
0.4472, 0.6325, 0.7746, 0.8944, 1.0 cm

In both tables it can be seen that the sensitivity is strongly dependent on the time interval.

So far in the case of Monte Carlo calculations only large parameter changes could be analysed
since the variance of the difference of independent simulation estimates are larger than the
differential effects one is looking for.
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Title

Numerical Challenges in Particle-Based Approaches for the Simulation of
Semiconductor Devices 1

Abstract

Introduction. The aim of this paper is to review and discuss the most challenging aspects of
the particle-based methods for simulation of charge transport in semiconductor devices. Since
the early theoretical works on the Monte Carlo (MC) method applied to device simulation (10;
12; 7), and several successive reference texts addressing both the physics (6) and the numerical
aspects (5) of the MC method, the basic algorithmic approaches have been modified to exploit
the continuous improvements of both hardware and software tools. Typical examples of
the algorithmic evolution are the adoption of the full band representation of the electronic
structure (3), the so-called cellular automaton (CA) (9; 13), and the simulation of increasingly
complex 3D structures (15; 16). This paper will address some of the most significant problems
which are still considered open in spite of the recent technological and scientific progresses.

Physics: the full band approach. Initially developed by K. Hess and co-workers (14),
the full band MC method has been fully implemented by Fischetti and Laux in 1988 (3).
Allowing to correctly represent the carrier dynamics in the Brillouin Zone (BZ) of momen-
tum space, the full band approach has undeniable advantages over less accurate analytical
representations of the electronic structure. However, the numerical representation of the
momentum space requires a more complex algorithmic approach, and increases the need of
computational resources. In particular, it seems clear that an in-homogeneously spaced grid,
either rectangular (13) or tetrahedral (2) is required to correctly model the low-field behavior
of semiconductors. This paper will show that this kind of “smart” grids also allow an accurate
reproduction of experimental data on ultra-fast transient response of semiconductors such as
GaAs and InP (11).

Furthermore, the inclusion of anisotropic scattering rates in the full band MC framework is
an improvement that is highly costly in terms of computational resources.

Scattering selection schemes: Monte Carlo and cellular automaton. The availability
of computers equipped with large amount of fast memory (RAM) triggered a noticeable

1Partially supported by the National Science Foundation (NSF), Grant ECS-9976484
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modification of the basic scattering algorithm in the MC programs. In particular, within
the full-band MC framework, the inversion of the energy-momentum dispersion relation is
required after the occurrence of each scattering. In facts, the entire discretized BZ has to
be scanned to find all the energy-conserving sites (cells). Even a smart searching algorithm
based on a three-dimensional recursive binary tree, and limited to the IW of the BZ, takes
a relatively long time to find the candidate sites. This effect is more evident at high fields,
when scattering events are more frequent. Implementations of efficient algorithms to reduce
time of this final state selection process in full band simulators have been reported based
on simplexes (1) and rejection techniques (8). Another approach which is current under
investigation is the so-called cellular automaton, described below.

The idea of storing the transition probability from any initial state to all possible final states
has been firstly implemented in the energy domain by Vogl and co-workers (9), and has
been recently extended to the full band representation by Saraniti and Goodnick (13). This
approach dramatically reduced the time required to process scattering events, allowing for
shorter total simulation times. The resulting method has been called (mostly for historical
reasons) “cellular automaton”, because of some resemblance of the early implementations
with the approach used to model the dynamics of complex systems. (17).

The algorithmic evolution of the full band CA, and of its hybrid variant (13), where the
traditional Monte Carlo approach is used in sub-regions of BZ where less scattering occur,
will be the main topic of the present contribution.

The speed-up obtained by the CA algorithm is impressive (up to 50 times), and the possibility
of cost-less inclusion of anisotropy in the CA scattering tables makes the method definitely
attractive. However, energy conservation issues are arising, due to the coarseness of the
momentum discretization grid. Several optimization techniques will be presented other than
the above mentioned hybrid approach to reduce the required memory and increase the energy
resolution.

Numerics: particle tracking. A crucial requirement of particle-based approaches (both
CA and MC) is the capability of efficiently track the dynamics of the components in the phase-
space. Given the high number of carriers required to model a realistic device, the particle
tracking technique is crucial for the performance of both the position- and the momentum-
space tracking algorithm. It is evident that a trade-off exists between the high flexibility of
tetrahedral (or triangular) grids and the difficulty of tracking particle trajectories moving
from cell to cell. While the choice of the authors is to use rectangular grids both in position
and momentum-space, several other successful approaches exist that make use of tetrahedral
grids (2). No satisfactorily detailed comparison has been made, to the best of the authors’
knowledge, of simulators based on differently structured grids, and the need of a final word
on that issue will be stressed as well.

Numerics: parallel computing. The idea of using special parallel hardware to speed up
the execution of particle-based simulators is an old one. The partially local nature of some
of the carrier interactions makes natural the parallel computing choice. Recent interesting
developments resulted in the the fact that a “special parallel hardware” is not required
anymore. In facts, cheap and efficient interprocess communication software (4) made possible
to use groups of conventionally networked workstations (“computer clusters”) as an individual
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parallel platform. A discussion will be carried out about the parallel versions of the particle-
based algorithms and parallel performance results will be presented. Optimal architectures
for the problems of interest will be discussed as well.
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Title

Optimal Gathering Random Walk Absorption Probabilities for Radiosity in
Scenes with Large Area Sources

Abstract

Optimal absorption probabilities for gathering random walk (3) were studied in (1) in the
radiosity setting and (2) in the general global illumination setting. In (1) we showed that if
we neglect the second order term in the reflected radiosity bi appearing in the expression for
the variance, the optimal absorption probabilities θi were equal to the reflectivities Ri. We
will study here the general case, this is, the term b2

i can not be neglected.

The expression for the efficiency of the gathering random walk is (1)(
f

1−(
R2

ave
θave

)
− k × f

)
× ( 1

1−θave
)

where the first term is the expected value of the Mean Square Error, the second term is
the average length of a path and f and k are scene dependent parameters ( k depending on
the b2

i values). We have used (and will use throughout this paper) the approximation that
R2

ave = (Rave)2 ≈ (R2)ave . This quantity has as optimal values:

θave1 = kR2
ave−Rave

√
1−k+kR2

ave

−1+k

and

θave2 = kR2
ave+Rave

√
1−k+kR2

ave

−1+k

From the discriminant we have that k ≤ 1
1−R2

ave
. Also from the denominator k 6= 1. The

quantity k is also positive, and equal to

k =

P
i Aib2i
ATP

s(Es+2bs)Φs×R2
ave

AT

where A, E ,Φ are area, emissivity and power, respectively, subindex s indexes the sources
and AT is the total area. Thus 0 < k ≤ 1

1−R2
ave

and k 6= 1. The case k = 0 was the one
considered in the (1), this is, b2

i quantities neglected, and θave1 = Rave. Our interest here is
to study the general case k > 0. After some approximations similar to the ones used in (1),
we obtain

k = 1

(1−Rave)((1−Rave)AT

P
s EsΦs

Φ2
T

+2
P

s RsΦs
ΦT

)
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where ΦT is the total power. We see inmediately that k = 1 , the discontinuity case in the
θave solutions, only can happen when Rave = 0 (in which case also all Rs = 0 ), which is a
consistent result. Also, considering the particular case of equal area and power for all sources,

k = 1

(1−Rave)((1−Rave)
AT
AS

+2Rsave )

where we see the influence on the result of the fraction of area covered by the sources AS
AT

. In
the limiting case where AT = AS it is clear that RSave = Rave and k becomes

k = 1
(1−Rave)((1−Rave)+2Rave)

= 1
1−R2

ave

It is easy to see that for this value θave1 = 1 . Thus for a uniform source covering all the
scene the optimal (limiting) case is when the path always survives. We see also that for
AS
AT

<< 1 then k ≈ 0 , which means that for small area sources the result in (1) is a very
good approximation. Now our interest will be in finding the θave optimal value in the in
between cases, relating it to Rave , and from this relation to be able to deduce a relationship
between Ri and θi values for all i . Although the big area source case might look at first
sight uninteresting, most radiosity problems can be converted into it by using the so called
first shot (4)(5), this is, expanding first the illumination from the sources and converting the
receiving patches into new sources with emissivity equal to the reflected direct illumination.
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Title

A Practitioner’s View on QMC Integration

Abstract

This paper is mostly empirical. We report on extensive tests of QMC integration in dimen-
sions 3, 6, 12, and 24, employing different test integrands, different low discrepancy sequences,
and large (>1011) numbers of trials. In contrast to the “folklore” about QMC integration,
we find that neither the asymptotic discrepancy formulas for the sequences nor the variations
of the integrands are a useful means to estimate the integration errors in practical cases. In-
stead, it has proven useful to repeat the integration several (e.g. 10) times with consecutive
pieces of QR points from a single sequence, and to use mean and standard deviation of these
repetitions to estimate the integral and its error. These errors are, of course, not worst case
errors, nor exact statistical average errors. But, as is well known, the asymptotic worst case
error formulas from the literature are unrealistic large (factors between 105 and 1015 in our
examples). Still they are cited, even if they are useless in practice.

In order to shed some light on these differences we also computed numerical approxima-
tions to the true discrepancies D∗(N) for N up to 109. The values of D∗, too, follow power
laws, and in the logarithmic scale are about half-way between the asymptotic D∗ and the
realistic errors divided by the variation of the integrand. If one accepts extrapolation to much
larger numbers, one must conclude that the true and the asymptotic discrepancies D∗ do not
meet before N = 1050 or more.

The full paper will show in figures and tables the following details:
1) The practical integration error is never found to behave as log(N)s/N as the asymptotic
worst case predicts, but always (within some fluctuation, of course) as a power law. The
power is −1/2 - 1/2s for characteristic functions, and between -1 and -1/2 for continuous
functions. In the latter case it depends on the integrand, and approaches -1/2 for large di-
mensions. The absolute positions of the error in the plots is determined by the rule that a
linear extrapolation of the log-log plot to N = 1 meets approximately the pseudo-random
value sqrt(var(f)).
2) We also computed the variation of several of the test functions. For most of them the ratio
of the variation over the square root of the variance increases exponentially with dimension.
Therefore, the variance, not the variation plays the decisive role for the size of the average
error.

1Partially supported by the Sonderforschungsbereich 276 of the Deutsche Forschungsgemeinschaft at the
University of Freiburg
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3) We compared the errors from integration with Halton sequences using different sets of
primes, and Niedereiter (t,s)-sequences with different bases. We never found the large er-
ror ratios predicted by the pre-factors of the asymptotic log(N)s/N law, but rather modest
spreads. Such modest differences are also found for the true discrepancies. Especially, Hal-
ton sequences using the lowest s primes, and Niederreiter sequences to base 2 have generally
comparable errors, and Niederreiter sequences with base 2 are often better than those with
the so called“optimal” base.
4) From the comparison of the mean errors and their standard deviation we conclude that the
distribution of the errors of our repeated integrations is somewhat broader than a Gaussian,
showing an excess which increases with dimension.
5) We also tried several simple randomization schemes for the repetitions in our method.
Their influence was, however, small, once the number of trials exceeded 104. Note that ran-
domization schemes like Owen’s, in which the permutations of the sequences must be stored
in memory, are not feasible for large numbers of trials because of lack of computer memory.

It is obvious, that our results are of limited generality. The maximum number of trials
was, of course, restricted by the available computing resources. But we feel that the log-log
plots of the errors and of the discrepancies are linear enough, to allow extrapolation to at
least 1016 trials, which will, perhaps, be available for integration in 2015. Moreover, there are
certainly function classes, which behave differently from our test functions. Indeed, we hope
that more exact formulas for the average errors for certain function classes will be derived,
which can also be implemented with limited expense by the common user. Nevertheless, we
feel, that the tool of QMC integration is so advantageous, that it should be used even before
its limits are fully known.
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Title

A Comparison between Quasi-Monte Carlo and Cubature Rule Based Methods
for Solving High-Dimensional Integration Problems

Abstract

The problem of estimating the integral of a function f : Cs → IR over a hyper-rectangular
region Cs ⊂ IRs is considered. Solving this problem in high dimensions is usually considered
a domain of Monte Carlo and quasi-Monte Carlo methods, because, compared to most alter-
natives, the theoretical power of these techniques degrades little with increasing dimension.

In this work, quasi-Monte Carlo techniques based on (t, s)-sequences as well as Monte Carlo
algorithms are compared to integration routines based on common interpolatory cubature
rules, which are usuallay not used in dimensions beyond about s = 10. These algorithms can
be built in an adaptive as well as a non-adaptive fashion, and can be based on a wide range
of different cubature rules with highly varying properties.

For these empirical tests, which are carried out for dimensions up to s = 100, a number
of different test integrands with different attributes are used, including all integrands from
Genz’s test function package.

After introducing all evaluated routines, this work focuses on pointing out the strength and
weakness of each algorithm. Special care is taken to investigate which integration routine is
most suitable for a given integrand functions in a given dimensions, and to determine the
reason for this behavior.

For certain integrands, it turns out that cubature rule based algorithms can provide more
accurate results than quasi-Monte Carlo routines for dimensions up to s = 100.

1Research supported by Österreichische Nationalbank, Jubiläumsfonds project no. 6788

187



I.M.Sobol’
D.I.Asotsky
Institute for Mathematical Modelling
4a Miusskaya Square
Moscow 125047, Russia
e-mail: hq@imamod.ru

Title

One More Experiment
on Estimating High-Dimensional Integrals

by Quasi-Monte Carlo Methods

Abstract

The mean value formula for estimating high dimensional integrals is considered and its ap-
proximation error

δN [f ] =
1
N

N−1∑

k=0

f
(
x(k)

)
−

1∫

0

...

1∫

0

f (x) dx

is studied. Here x=(x 1,..., xn). In the crude Monte Carlo method (MC), the nodes x (k) are
independent values of the random point ξ uniformly distributed in the unit hypercube. If the
variance Df (ξ) is finite, the probable error of MC is rN = 0.6745

√
Df (ξ) /N ; it decreases

as 1/
√

N . For quasi-Monte Carlo estimates (QMC) the nodes x (k) are nonrandom points of
a sequence called quasi-random. Sometimes the QMC convergence rate is δN = O (1/N).
The most important problems where QMC is more efficient than MC include integrands f(x)
whose dependence on x i decreases as the number i is increased. However, the situation is more
obscure if all the variables x 1,...,xn are equally important. On one hand, simple examples
demonstrate the advantage of QMC at relatively small dimensions only (most authors suggest
n ≤ 12 ÷ 15 ). On the other hand, problems from financial mathematics are known where
QMC outplays MC at n=360. Recently, Prof. H. Rabitz has suggested that quite often in
mathematical models the low order interactions of input variables have the main impact upon
the output. In the ANOVA-representation of such models

f (x) = f0 +
∑

i

fi (xi) +
∑

i<j

fij (xi, xj) + ... + f12...n (x1, x2, ..., xn)

the main terms are the low order ones. Clearly, QMC integration of such functions will be
rather efficient even when n is large and the variables are equally important.

2. The present experiment. We have selected a set of test functions depending on a
parameter c, 0 < c ≤ 1,

f (x) =
n∏

i=1

[
1 + c

(
xi − 1

2

)]
.
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The case c=1 has been considered earlier but only for dimensions n ≤ 50. In our experiment
n ≤ 300. For x (k), points of LPτ -sequences (that are often called Sobol sequences) were
selected. We have used the ”superfast” program from [1]. The number of nodes N ≤ 228.

3. Small c. An asymptotic formula was proved: for arbitrary n and N

δN [f ] = − nc

2N
+ O

(
c2

)
.

Then for several fixed values of N, level lines |δN | = const were computed. For moderate nc
we got hyperbolas nc = 2N |δN |. In cases where N |δN | converge as N increases, the limit is
likely to be nc/2.

4. Large N . Applying the Koksma-Hlawka inequality one can prove that
√

NδN [f ] → 0
as N → ∞. Therefore δN/rN → 0 and QMC always outplays MC at N → ∞. However
in practice, the amount of points N is restricted, and the relations between δN and rN are
different. Let N ≤ 225. Then at nc < 15 errors |δN | behave like 1/N ; at 15 ≤ nc < 35 the
|δN | decrease faster than rN , while at 35 ≤ nc < 60 they are of the same order of magnitude.
Finally, at nc > 60 the |δN | are much larger than rN , and MC becomes more expedient than
QMC.

5. Examples.

N
nc=6 nc=12 nc=24 nc=50 nc=150

n=24,c=0.25 n=120,c=0.1 n=96,c=0.25 n=200,c=0.25 n=150,c=1
N |δN | N |δN |

√
N |δN |

√
N |δN |

√
N |δN |

216 1.43 17.8 0.20 8.90 14200
218 2.61 15.3 0.07 4.65 7210
220 1.52 25.5 0.11 0.94 3560
222 3.04 28.2 0.03 0.22 1740
224 2.59 3.4 0.007 0.28 1020
226 2.78 8.8 0.015 0.58 292
228 2.87 18.7 0.007 0.12 929

nc/2 = 3.0 nc/2 = 6.0
√

NrN = 0.42
√

NrN = 0.70
√

NrN = 8.4

6. Conclusion. One should be careful with QMC if there are very many important variables.

Reference [1] I.M.Sobol’, V.I.Turchaninov, Yu.L.Levitan, B.V.Shukhman. Quasirandom
Sequence Generators. Keldysh Inst. Appl. Maths., Moscow, 1992, 22p.
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Title

Simulation of the
Isotropic Homogeneous Random Field in R3

Abstract

The expansion in spherical functions of a homogeneous isotropic field in R3 is an infinite sum
of the stochastic integrals with infinite limits. For the given in the root-mean-square sense
exactness ε the approximate model with the finite limits is constructed. This model is used
for the field simulation.

Let v = (x, y, z) εR3 and (r, ϕ, θ) be the spherical co-ordinates of the point v. Then the
isotropic field η(v) = η(r, ϕ, θ) with Eη(v) = 0, Dη(v) = 1 has the spectral representation [1]

η(v) = η(r, ϕ, θ) =
∞∑

m=0

m∑

k=0

Ak
mP k

m(cos θ)×

×
[
cos(kϕ)

∫ ∞

0
jm(λr)dzk1

m (λ) + sin(kϕ)
∫ ∞

0
jm(λr)dzk2

m (λ)
]

, (1)

A0
m = [2m + 1]1/2 , Ak

m =
[
2
(2m + 1)(m− k)!

(m + k)!

]1/2

, k > 0.

Here the following designations are used: P k
m(λ) are the attached Legendre polynomials,

jm(λ) are the Bessel spherical functions of the 1-st kind, zk1
m (λ), zl2

n (λ) are the independent
processes with the orthogonal increments and such that

Edzk1
m (λ) = Edzl2

n (λ) = 0, (2)

Edzls
m(λ)dzkt

n (λ) = δn
mδk

l δt
sf(λ)dλ. (3)

In relations (3) the Kronecker symbol δk
j is used, and f(λ) is the radial spectral density. The

correlation between the field points vj = (xj , yj , zj), j = 1, 2, is equal

R(ρ) = Eη(v1)η(v2), ρ2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (4)
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and
R(ρ) =

∫ ∞

0

sin(λρ)
λρ

f(λ)dλ.

We choose value ε > 0 and find three approximations ηA(v), ηA,N (v) and ηA,M,N (v) of the
field η(v) which successively differ from η(v) and from the each other no larger than by ε/3.

We get the field ηA(v) from representation (1) by changing the integral limits (0,∞) to (0, A).
As R(0) =

∫∞
0 f(λ)dλ = 1, then the value A such that

∫∞
A f(λ)dλ < ε/3 may be found. For

this A

E|η(v)− ηA(v)|2 =
∫ ∞

A
f(λ)dλ < ε/3. (5)

We divide the interval (0, A) in N equal parts (λn, λn+1), n = 0, 1, . . . , N − 1,
of the length ∆ = A/N , λn = n∆, and each of the integrals in the field ηA(v) represen-
tation (see (1)) we rewrite as a sum of N integrals. For example,

∫ A
0 jm(λr)dzk1

m (λ) =∑N−1
n=0

∫ λn+1

λn
jm(λr)dzk1

m (λ).

Then we introduce the field

ηA,N,M (v) =
M∑

m=0

m∑

k=0

Ak
mP k

m(cos θ)

[
cos(kϕ)

N−1∑

n=0

jm(λ̃nr)
∫ λn+1

λn

dzk1
m (λ) +

+ sin(kϕ)
N−1∑

n=0

jm(λ̃nr)
∫ λn+1

λn

dzk2
m (λ)

]
, λ̃n = λn + ∆/2, (6)

and put ηA,N (v) = ηA,N,∞(v).

We show how to find such N for which

Φ = E|ηA(v)− ηA,N (v)|2 < ε/3. (7)

We have

Φ =
∞∑

m=0

m∑

k=0

(Ak
mP k

m(cos θ))2
N−1∑

n=0

∫ λn+1

λn

|jm(λr)− jm(λ̃nr)|2f(λ)dλ.

It is possible to show that Φ < 4/3 r2
max ∆2, where rmax denotes the maximal distance from

the origin to the point in which the fields is simulated. Therefore for ∆ =
√

ε/(2rmax) and
N = A/∆ inequality (7) is fulfilled.

Let us show now how to choose value M for which the inequality

Ψ = E|ηA,N (v)− ηA,N,M (v)|2 < ε/3 (8)

is fulfilled. It is simple to verify that

Ψ =
∞∑

m=M

(2m + 1)
N−1∑

n=0

|jm(λ̃nr)|2
∫ λn+1

λn

f(λ)dλ.
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If value M is such that eArmax/(2M + 1) < 1 then it is possible to verify that

Ψ <
1

2Armax

(
eArmax

2M + 1

)2M+1 1

1−
(

eArmax

2M + 1

)2 .

By equating the right side of the last inequality to value ε/3, we find value M for which
inequality (8) is valid.

Hence from inequalities (5), (7), and (8) it follows that E|η(v)−ηA,N,M (v)|2 <ε.

In relation (6) the stochastic integrals
∫ λn+1

λn
dzks

m (λ) may be changed by the values√∫ λn+1

λn
f(λ)dλ ξks

mn, where the random values ξks
mn with the zero means and the unit variances

are orthogonal with respect to parameter n and they are independent with respect to the
rest parameters.

Under some restrictions on f(λ) it is possible to change
√∫ λn+1

λn
f(λ)dλ by

√
f(λ̃n)∆. The

expectation of the square difference Θ between these approximations does not exceed the
value

Θ ≤
N−1∑

n=0

∣∣∣∣∣∣

√∫ λn+1

λn

f(λ)dλ−
√

f(λ̃n)∆

∣∣∣∣∣∣

2

.

Therefore for the field η(v) modeling the following relation is used

η̃(v) = η̃(r, ϕ, θ) =
√

∆
M∑

m=0

m∑

k=0

Ak
mP k

m(cos θ)×

N−1∑

n=0

jm(λ̃nr)
√

f(λ̃n)×
[
cos(kϕ)ξk1

mn + sin(kϕ)ξk2
mn

]
. (9)

If the random values ξks
mn are independent, and they have a stable distribution, then the field

η(v) has the same distribution. In partial for the Gaussian field η(v) all processes z(λ) in
relation (1) and also values ξks

mn are to be Gaussian.

By affinity of the obtained field it is possible to get some kinds of the homogeneous non-
isotropic field [2].

As an examples the field simulation on the surfaces of the ellipsoid and of the cylinder.
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Title

Stochastic Lagrangian Models of Turbulent Flow - a Comparison of the
Path-Integration, Quasi-Monte Carlo, and Monte Carlo Approaches

Abstract

In analogy with the Feynman-Kac path integration formulation of quantum mechanics, a
general path integration formulation of stochastic-Lagrangian models of turbulent flow is de-
veloped with respect to the equivalence with the usual Eulerian and stochastic-Lagrangian
descriptions. We then discuss efficient numerical methods for the realisation of the Lagrangian
path integration which provide an effective alternative to the simpler Monte-Carlo approach.
The dynamical variables in the aforesaid models are velocity, the dissipation rate, and passive
or reactive scalars. The presentation will concern itself with path integrals in the configura-
tion or phase space and also with the manner of efficiently representing and computing the
analogues of quantum mechanical propagators of the Schroedinger and Fokker-Planck equa-
tions. The development is sufficiently general to also allow restricted Markovian evolution
of fluid elements, e.g., those requiring forcing by non-standard Brownian dynamics, which
is necessary in a Lagrangian description of intermittency in turbulent flows. Computational
comparisons of the path-integration, quasi-Monte Carlo, and Monte-Carlo approaches to the
simulation of particle-paths for a fully inhomogeneous turbulent flow problem will also be
given.

1Research supported by the the National Science Foundation (USA) under grant number NSF/CTS-9504827
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Title

Conditional Entropy Measures for Pseudorandom Numbers 1

Abstract

In our presentation, we borrow the notion of unconditional secureness from the field of cryp-
toanalysis. Formulated in terms of conditional entropy and mutual information, this concept
enables us to use some of the powerful methods developed in pseudorandom number (PRN)
analysis.

Continuous measures like Discrepancy, Diaphony, and Spectral Test are mostly used in theo-
retical analysis employing the techniques of Weyl sums and spectral analysis. Black-box tests
from the family of discrete Goodness-Of-Fit statistics (e.g. serial tests) on the other hand
play a dominant role in the empirical quality assessment. Here, relative frequency is the key
concept used to estimate probabilities.

Recently, a series of articles considered figures of merit based on entropy. Entropy can either
be estimated from relative frequencies, or by return time analysis. A certain subfamily of
serial tests was shown to be equal to a properly scaled version of entropy estimates.

For our test based on mutual information and conditional entropy we formulate both: an
empirical test built on relative frequency and a version in terms of Walsh transforms more
suited to theoretical analysis. We also give a sample application to the Hammersley point
set. The test may be interpreted as the average behaviour of pairs of random numbers from
subsequences with different lags.

Key Words

uniform distribution, pseudorandom numbers, entropy and information, Walsh transform

1Research was supported by the Austrian Science Foundation (FWF), Projects P12654-MAT and S8303-
MAT (FSP Number-Theoretic Algorithms and Their Applications)
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Title

Non-Gaussian Nonlinear Damage Detection by Monte Carlo Filter

Abstract

Non-Gaussian nonlinear filtering methods are relatively new topics these days. Basically the
non-Gaussian nonlinear filtering methods need lots of computation efforts. However, new
kinds of approach with using Monte Calro technique are becoming practical tools, such as
Genetic Algorithm, because of the remarkable progress of computer performance. Monte
Carlo Filter(MCF) proposed by Kitagawa is one of the methods, which can deal with non-
Gaussian noises, and the probability distributions are expressed by many particles, in other
words, sampled realizations. The behavior of each particle is simulated and tracked by
assumed model in MCF, while only first and second moments of the probability distributions
are estimated in Kalman filter.

One of the application of these filtering methods in civil engineering is damage detection
of structures. After a large earthquake, rapid damage estimation of structures, especially
important structures such as hospitals, bridge, firehouses and so on, is needed to prevent the
secondary disasters. However, huge time and cost are necessary to evaluate the damage of all
the structures, if we inspect visually structural damage in detail, which is conventional way.
A practical method for rapid damage detection of the structures with the monitored data is
desirable from the standpoint of damage detection or health monitoring. Linear/Nonlinear
identification methodology has been studied, and various methods are proposed by many re-
searchers. Kalman filter is the most famous and widely used in many fields due to its beautiful
and simple algorithm which needs only first and second moment of the probabilistic nature,
because Kalman filter is well established based on linear Gaussian assumptions. Though
many types of nonlinear identification methods are studied and proposed, but most of them
have the same limitation as Kalman filter has, because most of the proposed methods are
based on Gaussian noises which leads to quadratic form objective function (cost function) .
In other words, L2 norm is used in order to make the objective function. When the nature of
damaged structure is considered, other type of noises might be preferable. The minor damage
due to earthquake tends to be localized, in other words, the damage concentrates in limited
parts. Of course, when the destructive huge earthquake hits, damages will occur in many
parts at the same time. However, we do not need cautious inspections for the structure with
the major damage, because it is clear that the structure is severely damaged. In the purpose
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of damage detection, the minor to moderate damages are important. In order to detect this
minor to moderate damage, Gaussian process noise (L2-norm) may not be proper.

In this paper, the method of damage detection using the Monte Calro filter is proposed and
demonstrated. First, the formulation of the identification using Monte Calro filter is pre-
sented, which is natural extension of Kalman filter (linear Gaussian), but essential difference
is that we need not to use the Gaussian noises. Through numerical simulations of damage
detection by MCF with Gaussian or non-Gaussian process noise, the importance of the type
of process noises is demonstrated. In this numerical example, hypothetical 5-DOF model
is used. It is assumed that the damage occurs at specific one element, where the stiffness
decreases from 400 to 360 tf/m2, and damping ratio increases from 0.02 to 0.04 during earth-
quake. Due to this damage, the fundamental frequency of the model is reduced from 1.0Hz
to 0.99Hz. The observation data used for the damage detection are simulated structural re-
sponses adding 3% (rms ratio) Gaussian white noises. The number of particles is 1000. The
identification with up to particle number 10000 is tried, but the performance is almost same,
while in the case of less than 1000, the performance becomes worse. For the case of SDOF
system, good results are obtained even if the particle number is 100.

The distributions of particles of the estimated stiffness and damping ratio give directly the
non-stationary probability density function of the identified parameters. When observation
data at all nodes is used, the peak of estimated stiffness distribution is clearly detected.
While we use observations at node 1 and 3, the peak of distribution becomes vague, but still
we can observe the change of structural parameters. We can also observe the change of the
damping ratio, but generally it is not clear. Though the many simulations are conducted
under various conditions, to identify change of damping ratio is very difficult. Since identi-
fication of damping ratios are very unstable, we use only the change of stiffness to identify
the damage of structures. When the observation data of all nodes are used, the damage is
detected properly despite of types of process noise. While the observed data is limited to
node 1 and 3, the case with non-Gaussian process noise seems to be better than the case with
Gaussian process noise in this numerical simulation. These results suggest us that MCF with
non-Gaussian process noise is suitable for the damage detection.

In MCF, the identified parameters sometimes vary depending on the numerical conditions
such as particles number, seed of random number and parameters for the noise. Further
improvements such as adaptive tuning, proper type of process noise, more stable algorithm
are needed to develop a practical tool. However, MCF seems to be very prospective for the
damage detection of a structure, because it can be applied to a broad class of non-linear and
non-Gaussian problems.
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Optimization of a Ray Tracing Method for Radiative Heat Transfer Problems

Abstract

Numerical study of the industrial growth of crystals is an important factor of the progress
in this field since experimental approach is extremely expensive in terms of both time and
money. Final goals of the simulation are optimization of the growth processes and design of
the growth facilities.

A simulation of the crystal growth requires solution of a number of sub-problems in the
complex geometry of the real-life growth equipment (1). Usually one has to compute fluid
flow and mass transfer in the reactor channel (2) coupled to the global heat transfer in gas
and in all solid parts of the growth reactor. Due to the high temperatures of the process
radiative heat transfer is, as a rule, a dominant mechanism. Depending on the growth
process in question, the complexity of the radiative heat transfer model can vary from a
relatively simple one such as grey radiation via view factors (”surface-to-surface”) (3) to
rather elaborate multi-band models that account for both diffuse and specular reflections
from boundaries and for the presence of semi-transparent bodies.

Monte Carlo method is a powerful and flexible tool to simulate radiative heat transfer in
complex geometry that takes into account all the relevant optical phenomena (absorption,
scattering, refraction, diffuse and specular reflection) (4; 5).

An efficient method based on this approach – The Ray Tracing Method – has been proposed
in (6) for a 3D computations. It generalizes a view factors concept to the general case (view
factors for the arbitrary - diffuse or specular - surface and semi-transparent volume elements).
Monte Carlo process is used to compute diffuse and absorbtion view factors by tracking the
history of rays (representing bundles of radiative energy) that are emitted by both surface
and volume elements.

However, the Ray Emission Model described in (6) fails to account for semi-transparent media
with a large absorption coefficient, which, in turn, does not allow one to apply the method
for multiband computations. In (7; 8) a modified Ray Emission Model has been proposed to
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make this method applicable to multiband computations and radiation transfer simulations in
media with large absorption coefficients. The method described in (6) has been also modified
for efficient computations in an axisymmetrical case.

This paper discusses further improvements of the Ray Tracing Method. The numerical ap-
proach of the Ray Emission Model have been analyzed and improved. Specific physical effects,
such as ray interference in thin semi-transparent layers have been taken into account.

The Modified Ray Tracing Method has a common drawback of Monte Carlo methods: an
unfavorable trade-off between computation time and prediction accuracy (9). In the present
paper a number of approaches to optimized computational procedure has been studied in-
cluding universal ones such as pencil tracing technique, search acceleration routines etc. as
well as specialized techiques that are applicable to the restricted classes of problems only but
provide drastic reduction of the execution time.

The Modified Ray Tracing Method will be illustrated by both test problems and computations
in the real-life growth equipment. The first example is the heat transfer in the reactor
chamber used for growth of silicon carbide by sublimation method where the gray radiation
model provides sufficient accuracy. The three-band radiation model has been exploited for
computation of the heat transfer in the large scale industrial epitaxial Centura Reactor where
heating of a graphite susceptor provided by the radiation from halogen lamps surrounded by
golden reflectors. The need to consider more complex model in this case results from the
wavelegth dependence of the optical properties of quartz form which the reactor walls are
made. The computations have shown, in particularity, that reactor walls are heated mainly
not by the lamp radiation but by the secondary radiation from the substrate with much lower
surface temperature.
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